Hyper-Transport eVC
User Guide v1.0

Table of Contents

TaDIE Of CONTENTS ..ottt nes 3
(@ A VT PSPPI 5
Installation and INTEGIration ..o 5
INStalling the HT MOGE..........coieeeeeee et 5
Running the HT in Standalone MOdE ..o 5
Hyper-Transport Environment Configuration...........coeverererieerenene e 7
Basics of Hyper-Transport Structure and Terminology.........ccoveeeeveereeieeseeneseeseennenns 7
Logical Hyper-Transport SEFUCIUNE..........ocveiee ettt e 7
TeSt WIITING INTEITACE ... 8
Defining the System TOPOIOGYcecveieerieiesiereeesee e e ee e nee e re s e 8
DefiNING HT AEVICES:eiiieice ettt sne e e nre e 8
Defining a HOSt Bridge DEVICE........ccoieieeeeeeieee s 8
Defining @ TUNNEl 1O DBVICE.......cc.oiiieriieeeeeee et 9
Defining an EOC O DEVICEccuieieceeeeee ettt s 10
General parametersto the global environment ... 11
Host Bridge DeviCe Par @amMeELerSi..... oo 12
(D= o0 T o g o TN o =T 14
LiNK LEVE FLagSoooiee ettt st e e nnee s 14
Channel LEVE FIagS......ccooeiiieiese ettt 14
DeVICE LEVE FagS. ..ottt nnn 14
Defining SPecman TraffiCcvoe e e 15
Defining new address regions fOr tESHNG.ccvverererireneeee e 15
Base address CONfIgUIaLiONcoeiiiiririeiee et 15
Y= 400 USRS 16
Pre-Configuration Example for a Specman HT DeViCe.......cccceveveiveereninncenieneeee 17
Built-In Scenario DEfINITIONScccveiiiieieeieeie et ses 18
INCIUAEA FIIES ...ttt bbb nes 19

Overview

The Hyper-Transport (HT) test-bench is an e environment designed to provide verification and modeling
functionality for the Hyper-Transport bus protocol.
The test-bench has two modes of operation:

Standalone Mode — Thisis a standal one environment with no Verilog simulator attached. Thismodeis
useful for the design of test cases, evolution of the test bench and for traffic profiling. Clocking the design
and traffic passing between devicesis handled by e environment.

Test Mode — This mode of operation requiresaDUT and an HDL simulator to be connected to the test
environment. An external clock needsto be created and DUT wires must be used to connect to eache
device in the test bench. Thisisthe verification mode of operation.

Installation and Integration

Installing the HT Model

Toinstall the HT model, follow the steps outlined below:

1. Download thelatest Hyper-Transport model from Vaullt.

2. Extract the contents of the tar fileto your installation directory.
This creates the directory Hyper Transport and it contains all the necessary filesto runthe HT model.
A sampletest isalso provided in this directory.

Running the HT in Standalone Mode

Make sure that Specman Eliteisinstalled in your environment.

Add the Hyper Transport directory to the environment variable $SSPECMAN_PATH.
Load <install_directory>/HyperTransport/ht_sample test.e

Execute” test”

ElE SN o

Upon the successful completion of the session, the HT model will print out the“ HT Test Passed”
message.

= “sprciman e

|E:.i-aEpdlt.].!.1.=uL“tl:!9bt¢T_‘ﬂ-D\LﬂLbﬂ'FH.ﬂP

ﬁ@ﬁa.@lﬂv"ﬂﬁ.

IrcarrTupt | Losd Relosd Restors Fockilss

s s I

=i

i

Uelcome &0 Soecean Elite (3.3.3) -

Chacking Ticanse .. 0K

Dovard hmﬁ-’lmnhr’came’wﬂcnme’lﬂ- =
ding 1db_dec | arat {ons e {imporbed
Lopading {ldbk_conmon.e & [db_packet_definition.es & IdE_link. s &
It _device_control.e + 1db_Tink_interface.s +

Dot e § e am b Cimported bu ldt_core.ed ..

Doi Ilection: t mize iz F46T6951 bykes ...
Mo i 10 15 IDGEBIET. babams i
Loading ldt_core.e {inpurtza I:lu It_bkop_control.e} ...

Loading {ldt_lo_dewice.s + ldt_host bri
It soonar io_def init ions.o) T impor ted Idt _bop_control ey ...

Jloing garbage ool lection: owrrent size is 3779055 bytas ...
i R - NP RiFE iS []
iLoading lot_kop_conkrol.e {ismportad by ldi_sample_beat.ed ...
finporbed by ldbk_semple besk.oaed ...
Loading 1o _sasgple banch.e
ding Jhomnes | sventkAcscodspecnans Idt_sonpla_task.a ...

Io_test.e
It _core.ed ...

Loading ld_comerage .
Cimportod by 16k _sasple kask.e) ..o

1dt_charnel_interface .o

Tegh | Covoarsgs Souroe Config Thruau:l
Lirked on o Moy L7 Z2:50:%d 2001 X

Eils Edit ies Test . Debug Tools User Help

e | L 2 B

¥
e B

o
SMpnRa * E 3-]
| [Idt_=enple_best | | Hornel | Ready
=T Specman ENite L

| oo |

o, 25151 m hwl:-_h-ldw: Higask, lr'v}'-hrc Bounstroon Limk = BA = Buybo_Read :

]
i {l: i Iw Li :
u—-suu:&}gﬁ-mm SR e :u;:-oﬂﬁrrw% R
m:‘hﬂ} riedf Link © B{ © RdRasponse
l.hlil:-ID='0|s‘2 Irir.'ql:d)w:l P Eu-|='0ls11 Errur:l)wﬂil Ennt-:(m} Hotp=ihel
20168 _na pinde dirui o tltll.uru'hg-!_!g-u Upakrean Link 1 T4 © Byba Rasd o
.E‘ﬁ:l.;!: (-] I'h'.kl u:dﬁt IIH! Beru}d MOTE: Bownsfrean Link 1 R - Byba Pasd o
Bata=ihid Dk n=heficief 7 25:1 K o 3
BT Aodal Conplatod
Lask specebs Eick - s _rundd was cal led
boraal sbop = ;t,up_nn iz conpleted
Chacking the tast .
Checking is mll:t: = O MIT errors: O T wornings.
21416 e (LBT_ERROIR_HAHBLER) HOTE
R IEELEEEELEIN NI IEICICICICIE I3 R Ir I I3 TTLTITITIRIZIZIEITCLCLLLLNT
7418 na (LET_ERRIE 3 WITED LOT Report @ 0 Probocol Errors [
lrm:-ur-l:dm Errors
TH1E na :uimm: HITE: LOT Report @ 0 Probocol Usrnings Doourred @ @
|ru15m=|:-lu1 Larmi
TH1E na !Mm!l HOTE 1
LET Test PISER
:Irmmhlm Coundars For! hisk beidge(Hosk _Bradge)
Flush=0 Urite=hiS Aead=106 brosdcast=l] Fences) @ Cond g Uribes30 Cond g Boaed=37
Transackion Coundara Forl o dovice MT-unn-nI I Bavsice}
FlI.L“'I-:' Uritesl Roaded Brosdesst sl Fonda
Iran=ack jon Counters Fori Io_tvil:e_im 10 _Bevice)
Fluﬂ':il lk*ltnll.'l Readed Brosdcasts® Fi
_I.rnl-.i 1 couver_struck bo 1db_senple_tosk_1.ecoe
'2?415 m CTEAT_STATS¥: KOME 397 meconds real Eime esspired doring sioulabion
. RONIE 1416 Licks el dur i s lak Lon
'2?415 e tlEﬁTjTﬂTﬁL HOIE Sivulat fon Perforpence Clock Cycles por Second -
1|
3| ﬁ.
Bk _manm lo_test | | Horna | Ry |

Successful completion of thistest ensures the correct installation of the HT model.

Hyper-Transport Environment Configuration

HT device HT device HT device

downstream downstream

HT link par HT link par
linkid O linkid 1

Single Hyper-Transport daisy chain

A single HT daisy chain, from host-bridge to the end of chain device, isreferred as a single bus. Each link
pair within a bus has a specific link id. ‘0" isthe link id connecting the host bridge to thefirst |O device and
the devices down the link will receive incremented link ids.

Basics of Hyper-Transport Structure and Terminology

HOC: Head of chain

EOC: End of chain

Upstream: Traffic traveling towards the host bridge.

Downstream: Traffic traveling towards the end of chain.

Upstream interface: Interface closest to the Host Bridge (i.e. the link with a TX upstream path).

Downstream interface: Interface pointing away from the Host Bridge (i.e. the link with aTX downstream
ath).

git t?me: A bit time is the time window necessary to transmit aslice of data on agiven HT link. Different

HT links can work on different clock frequencies.

Logical Hyper-Transport Structure
The HT model isdivided into several logical parts:

Link Interface isthe lowest logical level of the HT model and is the part that actually interacts with the bus
at awirelevel. Itisthesingle point of contact for the model to interact with the DUT and responsible for
framing an HT packet into the appropriate number of bit times and generating/checking the CRC for each
bit lane.

The Channel isthelogical interfaceto the HT link. It handlesall HT traffic at the packet level and
manages the inbound and outbound packet ordering. It takesthe HT packets and helpsto

assembl e/disassembl e the packet for interaction with the link interface. The channel allowsthe deviceto
present packets to be transmitted and handles the scheduling. Additionally the channel will present received
packetsto the device.

The Device is the main control node sitting on the HT chain. It isresponsible for generating and managing
traffic at ahigh level. It will then passthe desired traffic to the HT Channel for interaction with the actual
HT protocol/bus.

Test Writing Interface

Thetest file“ht_sample_test.e”, included in the installation, contains all of the constraints that the user
should adjust to customize their test environment and the test to be run.

Note: Any generation constraint outside of thislist isintended to keep the generator from creating
illegal/invalid test cases.

Defining the System Topology

The flowing examples define a Host Bridge and an EOC Device implemented by the HT model. These two
devicesinteract with the DUT which isa Tunnel Device implemented in Verilog HDL.

Defining HT devices:

The following steps are necessary in order to set up the HT protocol devices and the system topology.
More detailed information can be found in the “ht_sample_test.€” file, where set up includesan “e” Host
Bridge and EOC device surrounding aVerilog Tunnel device (DUT).

Defining a Host Bridge Device

Instantiate a basic Host Bridge device:

exanpl e_host : ht_device is instance;
keep exanpl e_host.device_functi on == Host_Bri dge;

Set up the HDL path to the interface point for this device:
keep exanpl e_host. hdl _path() == "testbench";
Connect system wide Power and Reset signals:

keep exanpl e_host. Reset L == "HT_RESET_NEG';
keep exanpl e_host. Power == " HT_POWEROK";

Define the signal interface for the link:
keep for each (interface) in exanple_host.ht_interfaces {
Definethe basic clock for the link interface:

interface. ht _link.ht_Iink_fundamental _cl ock_signal == appendf("HT_CLK");

Definethe signalsfor the DUT'sreceive path (The '€ device's TX path):

for each in interface.ht_link.clk_tx_H{

it == appendf ("HT_RX_CLK_H");

I

for each in interface.ht_link.clk_tx_L {
it == appendf ("HT_RX_CLK_L");

I

interface. ht_link.ctl_tx_H == "HT_RX_CTL_H";
interface.ht _link.ctl _tx_L == "HT_RX_CTL_L";
for each in interface.ht_link.cad_tx_H {
it == appendf ("HT_RX_CADY%d_H"', index);
}
for each in interface.ht_link.cad_tx_L {
it == appendf ("HT_RX_CAD%d_L", index);
b

Definethe signals for the DUT's transmit path (The '€’ device's RX path):

for each in interface.ht_link.clk_rx_H {

it == appendf ("HT_TX_CLK_H");
I
for each in interface.ht_link.clk_rx_L {
it == appendf ("HT_TX_CLK_L");
b
interface.ht _link.ctl _rx_H == "HT_TX _CTL_H";
interface.ht _link.ctl_rx_L == "HT_TX _CTL_L";
for each in interface.ht_link.cad_rx_H {
it == appendf ("HT_TX_CAD%_H"', index);
I
for each in interface.ht_link.cad_rx_L {
it == appendf ("HT_TX_CAD%d_L", index);
b

Defining a Tunnel 10 Device
Instantiate a basic Tunnel 10 device:

exanpl e_tunnel : ht_device is instance;
keep exanpl e_tunnel .device_function == Tunnel _I O _Devi ce;

Set up the HDL path to the interface point for this device:

keep exanpl e_tunnel . hdl _path() == "wasabi _tb";

Connect system wide Power and Reset signal:

keep exanpl e_tunnel . Reset L == "HT_RESET_NEG';
keep exanpl e_tunnel . Power Ok == " HT_POWEROK" ;

Define the signal interface for the link: A tunnel has two interfaces so the definition of signalsis more

complicated. The preface of "index == 0 =>" impliesthat the first interface should have the specified value

and the preface of "index == 1 =>" that the second interface should have the specified value:

keep for each (interface) using index (interface_index) in
exanpl e_tunnel . ht _i nterfaces

Define the basic clock for the link interface:
interface. ht _link.ht_Ilink_fundamental _cl ock_signal == appendf("HT_CLK");
Definethe signalsfor the DUT'sreceive path (The '€ device's TX path):

for each in interface.ht_link.clk_tx_H{

interface_index == => it == appendf ("HT_O0_RX_CLK_H");
interface_index == 1 => it == appendf ("HT_1_RX CLK H");

b

for each in interface.ht_link.clk_tx_L {
interface_index == => it == appendf ("HT_O0_RX_CLK_L");
interface_index == 1 => it == appendf ("HT_1 _RX CLK L");

b

interface_index == 0 => interface.ht_link.ctl_tx H == "HT_O_RX_CTL_H";

interface_index == 1 => interface.ht_link.ctl_tx_H == "HT_1_RX_CTL_H";

interface_index == => interface.ht_link.ctl_tx L == "HT_O_RX_CTL_L";
interface_index == 1 => interface.ht_link.ctl_tx_L == "HT_1_RX_CTL_L";
for each in interface.ht_link.cad_tx_H {
interface_index == => it == appendf ("HT_O0_RX_CADYd_H",
interface_index == 1 => it == appendf("HT_1_RX_CAD%_H",
I
for each in interface.ht_link.cad_tx_L {
interface_index == => it == appendf ("HT_O0_RX_ CADYd_L",
interface_index == 1 => it == appendf ("HT_1_RX_CADY_L",

H

Definethe signalsfor the DUT's transmit path (The '€ device's RX path):

for each in interface.ht_link.clk_rx_H {
interface_index == 0 => it == appendf ("HT_O_TX CLK H");
interface_index == 1 => it == appendf ("HT_1_TX CLK H");
I
for each in interface.ht_link.clk_rx_L {
interface_index == 0 => it == appendf ("HT_O_TX CLK L");
interface_index == 1 => it == appendf ("HT_1_TX CLK L");
I
interface_index == => interface.ht_Ilin
interface_index == 1 => interface. ht_link
interface_index == => interface.ht_lin
interface_index == 1 => interface. ht_link
for each in interface.ht_link.cad_rx_H {
interface_index == => it == appendf ("HT_0_TX_ CADYd_H",
interface_index == 1 => it == appendf ("HT_1_TX CADY%_H",
I
for each in interface.ht_link.cad_rx_L {
interface_i ndex == => it == appendf ("HT_O0_TX_ CAD%_L",
interface_index == 1 => it == appendf ("HT_1_TX CAD%_L",

H

Defining an EOC 10 Device

Instantiate abasic EOC 10 device:

exanpl e_EOC : ht_device is instance;
keep exanpl e_EOC. devi ce_function == EOC_| O _Devi ce;

Set up the HDL path to the interface point for this device:
keep exanpl e_EOC. hdl _path() == "testbench";
Connect system wide Power and Reset signals:

keep exanpl e_EOC. Reset _L == "HT_RESET_NEG';
keep exanpl e_EOC. Power Ck == " HT_POWEROK" ;

Definethe signal interface for thelink::

keep for each (interface) in exanple_ECC. ht_interfaces {

Definethe basic clock for the link interface:
interface. ht _link.ht_link_fundamental _cl ock_signal
Definethe signalsfor the DUT'sreceive path (The'e device's TX path):

for each in interface.ht_link.clk_tx_H {
it == appendf ("HT_RX_CLK_H");

k.ctl _rx_H == "HT_O_TX_CTL_H";
.ctl rx_H == "HT_1_TX_CTL_H";
k.ctl _rx_L == "HT_O_TX _CTL_L";
cctl rx_L == "HT_1_TX _CTL_L";

appendf (" HT_CLK");

-10-

}s

for each in interface.ht_link.clk_tx_L {

it == appendf ("HT_RX_CLK_L");
b
interface. ht_link.ctl_tx_H == "HT_RX_CTL_H";
interface.ht _link.ctl _tx_L == "HT_RX_CTL_L";
for each in interface.ht_link.cad_tx_H {
it == appendf ("HT_RX_CADYd_H", index);
}
for each in interface.ht_link.cad_tx_L {
it == appendf ("HT_RX_CAD%d_L", index);
b

Definethe signals for the DUT's transmit path (The '€ device's RX path):

for each in interface.ht_link.clk_rx_H {

it == appendf ("HT_TX_CLK_H");
I
for each in interface.ht_link.clk_rx_L {
it == appendf ("HT_TX_CLK_L");
I
interface.ht _link.ctl _rx_H == "HT_TX _CTL_H";
interface.ht _link.ctl_rx_L == "HT_TX _CTL_L";
for each in interface.ht_link.cad_rx_H {
it == appendf ("HT_TX_CAD%_H"', index);
I
for each in interface. ht_link.cad_rx_L {
it == appendf ("HT_TX_CAD%d_L", index);
b

General parameters to the global environment

In order to define the directed traffic for a Specman device, a new scenario must be created. First define a
name for the scenario in the ht_scenario_kind type. Then extend the ht_scenario object to create a new
when subtype that defines the generate_transactions method. After that is done, extend the

ht_address region typeto create atarget memory region and extend the ht_address_map object to define
the region. Use the schedule_packet() method to queue the request and use the directed methodsto generate
the request. Thefollowing isan example for generating a sequence of 4 packets.

extend ht_address_region : [USER_REG ON];
extend USER_REG ON regi on ht_address_map {

keep soft base_addr == 40' h00_1000_0000;
keep top_addr == 40'h00_1100_0000;
3

extend ht_scenario_kind : [USER_SCENE];
ext end USER_SCENE' ki nd ht_scenario {
keep addr _map.regi on == USER_REG ON;

Don't self generate target addresses
keep target_address_gen_conpl ete == TRUE;

generate_transacti ons() @arent_device. ht _device_clock is {
var delay : uint (bits:4);
gen del ay;
wait [delay] * cycle;
schedul e_transacti on(parent _device.gen_directed_wite(DoubleWwrd _Wite,
NonPost ed, NoPassPW 4'b1000, 9% 32' hCAFE}, 40'h1111100000));
gen del ay;
wait [delay] * cycle;
schedul e_transacti on(parent _devi ce.gen_directed_wite(Byte Wite, NonPosted,
NoPassPW 4'b1001, 9% 32' hDEAD, 32' h0003}, 40'h2222200000));
gen del ay;
wait [delay] * cycle;

-11-

schedul e_transacti on(parent _devi ce. gen_directed_read(Doubl eWr d_Read,
NoPassPW PassPW 4'b1000, 4'b0000, 40'h1111100000));

gen del ay;

wait [delay] * cycle;

schedul e_transacti on(parent _devi ce. gen_directed_read(Byte_Read, PassPW
NoPassPW 4'b1001, 4'b1111l, 40' h2222200000));

done = TRUE;

Host Bridge Device Parameters:

Max_memory_latency: Defines the maximum memory latency when writing or reading to the devices
memory.Max_memory_latency can be configured to be between 0x0 and Oxffffffff inclusive. The default
latency is 10 cycles.

Max_io_delay: Definesthe maximum latency 1/0 when writing or reading to the device's PCI 1/O region.
Valid Max_io_delay range from O to Oxfffffffff. However, the currently the HT model does not
support accessesto the PCI 1/O space. The default delay is 10 cycles.

Max_tunneling_delay: Definesthe maximum number of cyclesto wait before forwarding packetsthat are
not destined for the Host Bridge. Max_tunneling_delay can be set between 0 and Oxffffffff. The default
setting is10 cycles.

ht_interfaces: Thisisalist of links or interfaces associated with a device. In the case of the Host Bridge, it
only has 1 ht_interface.

generate bad_CRCs: Thisis aboolean flag to define whether random CRC error should be injected into
the system. The default setting is FAL SE.

Thefollowing are virtual channel queue weights that control the priority and selection frequency of the
scheduled packets to be transmitted based on itstype. All VC weights must be positive and the default
weight is 1. Along with the VC_queue weight, the schedule_timing_weight (for control packets) and
data_scheduling_weight for data packets) are also factored into the priority and selection process. Thefinal
weighting for a packet is calculated as follows:

for control packets:
packet_weight = (VC_queue weight + schedule_timing_weight* (max_num_queable_items- index));
whereindex istheindex where the packet isin the scheduling queue

for data packets:
packet_ weight = VC_queue weight + data_scheduling weight.

Note, the VC_queue_weight represents either the Posted VC_queue weight, onPosted VC_queue_weight
or Repsonse_VC_queue_weight depending on the packet's virtual channel type.

For control packets, the scheduling_timing_index affects the probability that items earlier in the queue will
be serviced earlier.

Posted VC_queue weight: The weight that is factored into a Posted packet's weight. The default setting is
1 and the weight must be valid.

NonPosted VC_queue weight: The weight that is factored into a NonPosted packet's weight. The default
setting is 1 and the weight must be valid.

-12 -

Response VC_queue weight: The weight that is factored into a Response packet's weight. The default
setting is 1 and the weight must be valid.

scheduling_timing_weight: Thisrepresents the priority of packets earlier in the tc_scheduling_queue to be
selected for transmission. The default weight is 1. The scheduling_timing_weight can be from O to
OXFFFfffff.

data_scheduling_weight: The default weight is 1. The scheduling_timing_weight can be from 0 to
OXFfFfffff.

Thefollowing are the set of knobs that allow the user to determine the exact ordering requirements of the
HT IO traffic. They are generated from the ordering section 7.1 from the 1.0 HT specification: The default
setting allow for the most aggressive rescheduling of packets.

Posted_Request_with_PassPW_pass Posted_Request: A boolean flag allowing posted request packets
with the PassPW bit set to pass posted request packets. Default setting is TRUE.

NonPosted Request_with_PassPW_pass Posted_Request: A boolean flag enabling whether a non-
posted request packet with the PassPW bit set to be transmitted before a posted request packet. Default
setting is TRUE.

NonPosted_Request_pass NonPosted_Request: A boolean flag enabling whether a non-posted request
packet can be sent before a non-posted request. Default setting is TRUE.

NonPosted_Request_pass Response: A boolean flag defining whether a non-posted request packet can be
transmitted before aresponse. Default setting is TRUE.

Response with_PassPW_pass Posted_Request: A boolean flag defining whether aresponse packet with
the PassPW bit set can be transmitted before aposted request. Default setting is TRUE.

Response pass Response: A boolean flag enabling response packets to pass other response packets.
Default setting is TRUE.

create target_starvation: A boolean flag to control whether the receive link should be starved or not. The
default valueis FALSE.

starvation_buffer_release percentage: The default valueis 10 and valid configurations range between O
and 100 inclusive.

starvation_cycle_count: Defines the number of cyclesto wait before releasing buffers once the receive
link isstarved. Currently the default and only valid configuration for this parameter is 0.

nop_bandwidth_percent: Defines the percentage of bandwidth consumed by Nop packets. Vaid
configurations are 1 to 99% and the default setting is 25%.

nop_maximum_buffer_release: Represents aboolean flag whether the Nop packet indicates that the

maximum number of buffersisavailablein the sender. The default setting is TRUE. If
nop_meximum_buffer_releaseis FAL SE, arandom number of bufferswill be released.

interrupt_tx_packet_percentage: Defines the probability of a packet that is being transmitted to be
interrupted on a given 4-byte window. The default value is 25% and the valid ranges are O to 100.

-13-

Debugging Flags

Link Level Flags and Channel Level Flags can be customized on a per device basis,
but that is considered to be an advanced feature asit is more difficult to do.

Link Level Flags

These are the flags to control what information to be printed on the screen.

debug_link: Flag to print link level information to the user interface.

debug_crc: Flag to control printing of CRC information to the user interface.
debug_initialization: Flag to control printing initialization information to the user interface.

record_link_traffic :Flag to control the link interface to record every bit timethat is transmitted and
received.

Channel Level Flags

display_channel_messages: Flag to control massage printing when a non-NOP packet istransmitted or
received.

debug_channel: Flag to control massage printing when a packet other than an empty Nop is transmitted or
received.

tx_scheduling_queue watermark: Flag to monitor the level of the tx_scheduling_queue. If the watermark
level is exceeded print a message.

Thefollowing are the reset sequencing flags:

initiate_sync_sequence_delay: Number of cyclesto wait after RESET is deasserted before initiating the
SYNC SEQUENCE.

sync_sequence_length: Number of cyclesfor the sync sequence minimum number of cycles

Device Level Flags

record_traffic: Flag to control recording of traffic at the channel level
record_all_nop: Flag to control recording of nop with no information. However, if that information

development_test : Extending the system architecture for Standalone Mode of operation, remove thisfor
standard DUT.

-14 -

Defining Specman Traffic

Defining new address regions for testing

Address Region

test1l'region ht_address_map
test2'region ht_address map
test3'region ht_address map
test4'region ht_address_map
test4'region ht_address_map

Device Type
Host Bridge
Host Bridge
Tunnel Device
EOC

EOC

Base address configuration

Base Address

40'h00_0000_0000
40'h00_2000 0000
40'h00_4000 0000
40'h00_6000 0000
40'h00_6001_0000

Top Address

40"h00_0000_003f
40"h00_2000_003f
40'h00_4000_003f
40"h00_6000_003f
40'h00_6001_003f

Thetarget_memory_map is astructure used for adevice when it is generating random traffic. This
memory map enables the device to know what memory regionsit can access. Thisfieldisonly defined for
Tunnel and EOC devices as the Host will generate it's own target_memory_map based on chain sizing.

INIT_REGION'region ht_address_map :

base addr 40'h00_0000_0000;

-15-

Methods

The following are the methods used for users to create directed HT requests. They allow a user to specify
the major fields of the packet without worrying about the guts of an HT request. Each method will return a
newly created packet.

schedule_transaction(packet : ht_packet)

This method will take a packet that is to be transmitted and place it in the channels scheduling queue. In
addition, it will also maintain the appropriate scoreboards and counters for the transmit path. This method
should be the only means of accessing the channel on the transmit side.

gen_directed_flush(passing_rule: ht_passing_rules, SeqID : uint (bits:4))

passing Rule: Dictates if the PassPW bit will be set. NoPassPW or PassPW are the possible choices.
SeqlD: The sequence number to be used for this request.

gen_directed_write(data_type: ht_packet_encoding, vc: ht_virtual_channel, passing_rule:
ht_passing_rules, SeqID : uint (bits.4), data: list of bit, addr : uint (bits:40))

data_type: Specifiesif the request isto be aDoubleWord_Write or Byte Write. Double Word or Byteis
the choices.

vc: Selects either the Posted or NonPosted virtual channels. Posted or NonPosted are the choices.
passing_rule: Dictatesif the PassPW bit will be set. NoPassPW or PassPW are the possible choices.
SeqlD: The sequence number to be used for this request.

data: The datato be written.

addr: The 40 bit address

gen_directed read(data type: ht_packet_encoding, resp_passing_rule: ht_passing_rules,
passing_rule: ht_passing_rules, SeqlD : uint (bits.4), data_size: uint (bits:4), addr : uint (bits:40))

data_type: Specifiesif the request isto be a DoubleWord_Read or Byte Read. Double Word or Byteisthe
choices.

resp_passing_rule: Dictatesif the PassPW bit will be set for the response. NoPassPW or PassPW are the
possible choices.

passing_rule: Dictatesif the PassPW bit will be set. NoPassPW or PassPW are the possible choices.

Seql D: The sequence number to be used for this request.

data_size: Either the count field for Double Word request or the byte mask field for Byte requests.

addr: The 40 bit address

gen_directed_broadcast(vc : ht_virtual_channel, passing_rule: ht_passing_rules, SeqID : uint
(bits.4), addr : uint (bits.40))

vc: Selects either the Posted or NonPosted virtual channels. Posted or NonPosted are the choices.
passing_rule: Dictates if the PassPW bit will be set. NoPassPW or PassPW are the possible choices.
Seql D: The sequence number to be used for this request.

addr: The 40 bit address

gen_directed_fence(passing_rule: ht_passing_rules, SeqiD : uint (bits:4))

passing_rule: Dictatesif the PassPW bit will be set. NoPassPW or PassPW are the possible choices.
Seql D: The sequence number to be used for thisrequest.

- 16 -

Pre-Configuration Example for a Specman HT Device

Preloading the CSR's for each device:

extend ht_device_control _block {
pre_load_csr() is only {

i f(device_function == Host_Bridge) {
/1 Base_Address_Regi ster[0]

devi ce_header.write(6'h10, 4'hF, 3
/1 Base_Address_Register[1]

devi ce_header.write(6'hl4, 4'hF, 32'h00000000);
/1 Base_Address_Register[2]

devi ce_header.wite(6' h18, 4'hF, 32'h40000000);
/1 Base_Address_Register[3]

devi ce_header.wite(6' h1C, 4'hF, 32'h00000000);
/1 Base_Address_Regi ster[4]

devi ce_header.wite(6' h20, 4'hF, 32'h80000000);
/1 Base_Address_Regi ster[5]

devi ce_header.wite(6' h24, 4'hF, 32'h00000000);
s

if(device_function == Tunnel _| O _Device) {

/| Base_Address_Regi ster[0]

devi ce_header.wite(6' h10, 4'hF, 32'hC0000000);
/| Base_Address_Register[1]

devi ce_header.wite(6' hl14, 4'hF, 32'h00000000);
/| Base_Address_Register[2]

devi ce_header.wite(6' h18, 4'hF, 32'h00000000);
/| Base_Address_Register[3]

devi ce_header.wite(6' h1C, 4'hF, 32'h00000001);
/| Base_Address_Regi ster[4]

devi ce_header.wite(6' h20, 4'hF, 32'h40000000);
/| Base_Address_Regi ster[5]

devi ce_header.wite(6' h24, 4'hF, 32'h00000001);

N

''h00000000) ;

/1l Capability Command Register set the UnitlIDto 1
capability register.wite(6' h00, 4'hF, 32'h00010000);

i f(device_function == EOC_| O _Device) {

/1 Base_Address_Regi ster[0]

devi ce_header.write(6'h10, 4'hF, 32'h80000000);
/1 Base_Address_Register[1]

devi ce_header.wite(6' hi14, 4'hF, 32'h00000001);
/1 Base_Address_Register[2]

devi ce_header.write(6'h18, 4'hF, 32'hC0000000);
/| Base_Address_Register[3]

devi ce_header.wite(6' hiC, 4'hF, 32'h00000001);
/1 Base_Address_Regi ster[4]

devi ce_header.write(6'h20, 4'hF, 32'h00000000);
/1 Base_Address_Regi ster[5]

devi ce_header.write(6'h24, 4'hF, 32'h00000002);

/] Capability Command Register set the UnitlID to 2
capability register.wite(6'h00, 4'hF, 32'h00020000);

Built-In Scenario Definitions

The HT model includes 9 different kinds of pre-defined scenarios:

1. INTERMIX: Scenario that performs random read/write/flush/fence/broadcast traffic to a targeted
addressrange. The transactions are unique in that they target no overlapping regions of memory.

2. INTERMIX_OVERLAY: Scenario that performs random read/write/flush/fence/broadcast traffic
to atargeted address range. The transactions are non unique in that they target overlapping
regions of memory.

3. WRITE_IN_ORDER: Scenario that performsin order write request of random sizeto a
targeted_address range.

4. READ_IN_ORDER: Scenario that performsin order read requeste to atargeted_address range.

5. READ_WRITE_IN_ORDER: Scenario that performsin order and alternating write and read
request of random size to atargeted _address range

6. INTERRUPT: Scenario that performsin interrupts targeted towards the Host Bridge.

7. READ_POR_REGS: Scenario that reads and tests POR values of all registersfor aHT devicein
the chain from the Host Bridge.

8. WALK_ONES REGS: Scenario that writesa'l' to every bit in all theregistersfor aHT device
in the chain from the Host Bridge. Only bitsthat are not masked off inthe ht_basic_reg
func_write_mask will be written. Write will be followed by aread to the register as a check.

9. INTERMIX_REGS: Scenario that intermixes reads and writesto all the registersfor aHT device
in the chain from the Host Bridge. Write datais randomly generated and then ended with the
func_write_mask.

Further detailed information can be found in the “ht_scenerio_definitions.e” file in theinstallation
directory.

-18-

Included Files

FileName
ht_channel_interface.e

Description
The channel representsthe heart of the HT protocol. 1t manages packets
and queuing. It schedules packets for transmission and reassembles the
packets received by the link interface. Also, it allowsfor packet
reordering.

ht_common.e

Contains random structsthat are used throughout the model.

ht_core.e

Thisfileimportsthe corefiles. It providesagood separation of the model
allowing the core to be compiled while maintaining the flexibility of easy
user customization.

ht _coverage.e

User defined coveragefile

ht_declarations.e

Thisfile contains all defines and enumerated type definitions.

ht_device.e

Thisfile creates afoundation for an HT device

ht_device control.e

Thisfilecontains all of the control information needed for a device.

ht_host_bridge.e

Thisfile contains the definition for aHost bridge device.

ht io device.e

Thefile defines the behavior of the IO, tunnel and EOC devices.

ht link.e

Thisfile contains the necessary set up to run the model in Standalone Mode

ht_link_interface.e

Thisfile contains the description of the most primitive nature of the device.
Thelink interface handles the HT protocol at the bit time level. It aso
maintains and checks the TX/RX CRCs.

ht_packet_definition.e

Thisfile contains the description of a Hyper Transport packet.

ht_sample_test.e

Thisfile contains the example definitions for atest case. It will determine
what traffic to be generated and the set all of the runtime flagsin the ‘e’
modd. Thisfilewill importht sample bench.e and ht _top control.e

ht_sample_bench.e

Thisfile contains the example of atest bench. It will define the different
instantiations of the 'e model and provide the wires/structures used to
connect the devices. It can be viewed as defining the system topol ogy.

ht_scenario_definitions.e

Thisfile contains the definition of the traffic generation of the model
ht_host_bridge.e and the behavior of the host bridge device. It also
provides the definition of abasic chain initialization sequence.

ht top.e

Thisfileimports the core definition files.

HT CHANGE LOG

Thisfile contains the code revision log for the Hyper Transport model.

-19-

