
1 Theory of Operation
The csco_clkgen package is a verification component designed for emulating the function of a
digital clock oscillator. This package contains components written in both e and HDL. The user
configuration interface is written in e to take advantage of its random generation facility, while the
actual clock implementation is written in HDL for efficiency.

• HDL Clock Generator module – This HDL module is actually responsible for
generating all the clock signals the package provides. This part is written in HDL to
remain as efficient as possible.

• ‘e’ control logic for HDL Clock Generator Module – This piece controls all the
parameters of the HDL model as well as other aspects such as distributing clocks in the
Specman realm.

This package can generate different clock configurations ranging from fully directed to fully
random. This package is designed to provide clock events to both the Specman and HDL
environments. All efforts were made to ensure this package complies with the spirit and intent of
the e Re-use Methodology (eRM).

Each csco_clkgen_u unit instance can operate in either the ACTIVE or the PASSIVE mode:

• ACTIVE mode – The unit provides a clock to both the HDL and the e environment. The
unit will instantiate the clock in the Specman verilog stub file, and will connect it to both
the HDL and the e domains. The user may configure clock attributes such as duty-cycle
and skew via the e configuration interface of the unit.

• PASSIVE mode – The unit provides a clock to the e environment by sampling a DUT
driven clock in the HDL domain.

Figure 1: eVC Architecture

specman.v (verilog stub file)

csco _clkgen module

HDL clock
implementation

Specman

HDL

csco_clkgen_u

config : csco_clkgen _config_s;

program() @sys.any

Struct

TCM

Method

Event

KEY

UNIT

Domains

DUT

dut clk input

dut driven clk

clk input portposedge anyedgenegedge

csco_clkgen_u

clk input portposedge anyedgenegedge

other TB Units

other TB Units

locale = ACTIVE

config : csco_clkgen _config_s;

locale = PASSIVE

2

2 Quick Setup

2.1 Sampling Clock from DUT
Sometimes, especially when moving between a unit-level testbench and a higher level testbench,
the clock is driven by the DUT itself, but we would still like to use it as the sampling event for
TCMs in the e environment. In this case, the user should instantiate a PASSIVE instance of the
csco_clkgen_u unit. On the e side, the instantiation would be done as follows:

Note that any TCM declared at the unit-level will not need to change when we move up the
testbench hierarchy since the clock interface still looks the same.

2.2 Generating Clock to Drive DUT
To generate a clock that will be used by both HDL logic and e units, the user should switch the
csco_clkgen_u unit into ACTIVE mode.

On the HDL side, the generated clock will automatically be injected to the DUT at the specified
hdl_path() of sig_clock. The verilog target type defaults to a reg, which is most efficient,
but if the target signal is a verilog wire (eg, internal to the DUT) the driver type can be
reconfigured:

For ACTIVE csco_clkgen_u instances, the user may change a variety of attributes associated
with the clock via the configuration interface:

3

extend csco_clkgen_name_t : [MY_PCI];

extend csco_pci_env_u {
 pci_clk : MY_PCI csco_clkgen_u is instance;
 keep pci_clk.sig_clock.hdl_path() == "chip.pci_core.clk";

 a_tcm_method() @pci_clk.posedge is {
 …
 };
};

// remember to create the parallel config instance
INSTANCE_CFG begin
 config_instance_name = pci_clk,
 child_config_type = MY_PCI csco_clkgen_config_s,
 parent_config_type = csco_pci_config_s,
 parent_unit_type = csco_pci_env_u,
 child_unit_path = pci_clk
end;

extend PCI_CLK csco_clkgen_config_s {
 keep soft auto_drive_type == WIRE;
};

extend PCI_CLK csco_clkgen_config_s {
 keep period == 10_000; // assuming DUT timescale is 1ns
 keep duty_cycle == 55;
 keep skew == 1;
};

extend PCI_CLK csco_clkgen_config_s {
 keep soft active_passive == ACTIVE;
};

3 User Interface
Structs

Structs Description

csco_clkgen_config_s clock configuration struct

csco_clkgen_u clock generator unit

3.1.1 csco_clkgen_config_s like csco_config_base_struct_s (top)
Fields of csco_clkgen_config_s

Field Description

active_passive:
erm_active_passive_t

ACTIVE driver or PASSIVE monitor: ACTIVE mode generates
clocks using HDL model PASSIVE mode expects some HDL
source (DUT) to provide a clock which this model samples and
distributes to its clients

auto_drive_type:
csco_clkgen_hdl_type
_t

target verilog signal type to drive

auto_instance: bool control whether HDL clock driver module is automatically
instanced in specman stubs

auto_model:
csco_clkgen_model_t

model to instance

duty_cycle: uint percentage of period that clock will be high

enable: bool model can be enabled/disabled and re-programmed to start/stop
clock

enable_anyedge: bool enable event at both edges of clock

enable_negedge: bool enable event at falling edge of clock

enable_posedge: bool enable event at rising edge of clock

inv_phase: bool clock "phase" FALSE => start clk at 1'b0, first edge is rising
after "skew" delay TRUE => start clk at 1'b1, first edge is falling
after "skew" delay

jitter: uint here we define "jitter" to be the size of the window in which the
clock is allowed to transition this window will _start_ from
"skew" so if you need it centered you better do a "skew" -=
"jitter" / 2

name:
csco_clkgen_name_t

Name of the clock type, usually refers to a clock domain

period: uint all clk params in units of 1/1000 of timescale (ps?)

skew: uint delay from programming time to first edge transition

Events of csco_clkgen_config_s

Event Description

generated configuration coverage

4

3.1.2 csco_clkgen_u like any_env (top)
Fields of csco_clkgen_u

Field Description

config:
csco_clkgen_config_s

clock configuration struct

name:
csco_clkgen_name_t

clock type name for clkgen instance

sig_clock: in
simple_port of bit

clock signal to sample or drive

Methods of csco_clkgen_u

Method Description

set_enable(new_state:
bool)

method interface to update enabled state and reprogram the
verilog HDL driver. ignored for PASSIVE clock monitors.
Useful for OIR.

Events of csco_clkgen_u

Event Description

anyedge both positive and negative edge of generated clock

negedge positive edge of generated clock

posedge positive edge of generated clock

3.1.3 Types (top)

Types Description

csco_clkgen_hdl_type
_t: [REG, WIRE]

HDL signal type to drive

csco_clkgen_model_t:
[SIMPLE, SHAGGY]

type of model to auto-instance

csco_clkgen_name_t:
[DEFAULT_CLK]

clock type name for clkgen unit

5

4 Application Notes

6

