Monday, April 17, 2006

Event Handler Guidelines for RDL Library:EDCS-XXXX, Rev. 0.1

	
[image: image8.wmf]Event Enable Register

Override

Register

Status Register

Raw Events

Halt Enable Register

To

Summary

Layer

Interrupt

Event to

Summary

Layer

Halt

Event to

Summary

Layer

Event Handler at the Leaf Level

	Document Number
	EDCS XXXX

	
	
	

	
	Created By
	Jeff Brown

Alvar Dean
Dave Dube

Deepak Suryanaryanan

Unified Approach to Events
This document describes architecture guidelines for event handlers, RDL syntax extensions and an eVC approach to verification. It includes description of event structures, register types and software considerations.
Table of Contents

31. Introduction

32. Event Handling Architecture

32.1 Event Tree Structure

42.2 Event Clearing

52.3 Event Overrides (Test) registers

52.4 Chip Halts

62.5 First Interrupt

62.6 Event Counters

72.7 Event Severity

72.8 Library Support

83. RDL Syntax Extensions for Events

83.1 Introduction

103.2 Methodology Explained

113.3 Register Implementation

123.4 Usage Flow

134. The Verification Aspect

134.1 csco_event eVC

134.1.1. Event Data Tree:

144.1.2. Event APIs:

154.1.3. Sequence Library:

154.1.4. Integration of the eVC:

164.1.5. Integrating Error Tests:

165. Appendix

1. Introduction

ASIC functions such as events are commonly used on most ASICs and exist as reusable IP components. Their integration into the ASIC project flow though has not been unified. This document proposes a methodology that simplifies and automates design, documentation, verification, validation and driver development for events. We define an architecture for events based on past Cisco projects like CPP, Goldeneye and Scooby. We then introduce new extensions to the RDL language in Denali blueprint that provide an intuitive abstracted syntax for declaring events. A modular pre-processor is built to translate these extensions into register level RDL for Verilog generation and structured interchangeable data (XML) for use by all other ASIC phases. A verification library is built based on the XML data generated.

The document contains three sections. The first section introduces the event architecture for use with blueprint. The second section discusses the RDL syntax extensions and the final section describes the verification library.
2. Event Handling Architecture
Events, traditionally known as interrupts are used for two main purposes, to indicate the fact that a hardware event has occurred, or that an error condition has been detected.

Hardware events can be things such as crossing a FIFO or buffer watermark level, finishing a DMA operation, detecting a certain type or number of packets, completing a reset, initialization or other sequence, detecting a change in hardware configuration such as OIR, etc. Hardware events are expected by software and should be handled gracefully as they are rarely fatal.

Events resulting from error conditions can be broken into two main categories: Fatal and Non-Fatal. Fatal errors are those which corrupt control and/or data flow in such a way that continued operation may result in unpredictable results. Fatal errors may require hardware RESET to ensure proper recovery. Non-fatal errors may cause data packets to be dropped, truncated or simply counted and marked, while the error condition persists, but they don't otherwise impede on the operational integrity of the design. Examples of Fatal errors may be FIFO overflows/underflows, PLL lock problems, loss of synchronization across an interface, multi-bit ECC errors, etc. Non-fatal errors are things such as parity or ECC single-bit error detection on an internal or external bus or memory, FIFO overflows, accesses to non-existent registers or on invalid boundaries, protocol violations, etc. Whether a condition results in a fatal or non-fatal error is design-dependent. An error such as a FIFO overflow might be a fatal error on one design, while another design might gracefully recover and consider this a non-fatal error.

The distinction between fatal and non-fatal events is an important one as it relates to the verification environment. The environment must be able to predict the results of non-fatal interrupts and account for their consequences in scoreboards, monitors and eVCs. For fatal events, on the other hand, it may be enough to ensure that when the fatal error condition occurs that the event is set, propagated up the hierarchy, and added to the coverage database. Fatal error conditions may require disabling of normal environment error and completion checks.

The following sections describe the Event Handler properties.

2.1 Event Tree Structure
Event registers must be arranged in a hierarchical manner. Lower level event registers have leaf bits that each correspond to a raw event or error condition. Leaf bits are aggregated and propagated to summary bits higher in the event tree. It is preferred to have homogeneous status registers with either leaf or summary bits but not both.
All event registers except summary bits, have corresponding event enable registers that allow enabling or disabling of interrupts on a per bit basis. When possible, interrupt enables should be used instead of interrupt masks. If both enables and masks must be supported within a design (perhaps some IP blocks uses masks while others use enables), all the event bits within a given event register must be controlled in the same manner (i.e. all enables or all masks).

Ideally, a register would contain only leaf-level events or hierarchical summary bits, and not both. The interrupt methodology, however, should allow a mix of both in the same register.
The event hierarchy is shown in Figure 1, Figure 2 and Figure 3
2.2 Event Clearing
Events are cleared by addressing the raw error condition and clearing the status bit in the originating register. It is preferred to select RW1C (Read+Write 1 to Clear) as the default status register type. This allows software to use multi-threaded Interrupt Service Routines and directly control the clearing of the status bits. The other option, which is not recommended is to use a RC (Read to Clear) type status register. The RC option does have the advantage of registering a raw event that occurs after the first read to clear operation by software. This presents limitations to ISRs and precludes independent handling of each raw event in a status register.
[image: image1.wmf]
[image: image6.wmf]Event Enable Register

Override

Register

Status Register

Raw Events

Halt Enable Register

To

Summary

Layer

Interrupt

Event to

Summary

Layer

Halt

Event to

Summary

Layer

Event Handler at the Leaf Level

Hierarchical interrupt bits are summary bits which simply OR the status of lower level hierarchical interrupts, which themselves can be other hierarchical interrupts or leaf interrupts. Thus, hierarchical interrupt bits can't be cleared directly, rather, they are cleared when all the interrupts that they summarize are cleared by SW, and the HW cause of the interrupt is removed.
2.3 Event Overrides (Test) registers
Event overrides provide the ability for software to simulate the event or error condition that would have caused an interrupt by forcing the status bit to be set, as if the event had occurred. Using event overrides software and diagnostics can debug their interrupt service routine.

[image: image2.emf]Event Enable Register

Status Register

Event from

Leaf level or

lower

summary

level

Halt Enable Register

External

Interrupt

Halt

signal to

freeze

functions

Event Handler at the Top Level

Figure 2 - Event handler at the top level

Event overrides set the event status register bits, but propagation of overridden events up the interrupt hierarchy, remains under the control of the events enables.

Event overrides also provide a mechanism for the interrupt eVC to automatically verify the integrity of the entire event hierarchy. Thus, if event overrides are used, interrupt testing can be broken down into two sub-tasks: checking the event hierarchy, which can be fully automated in the interrupt eVC, and ensuring that the event sources trigger the events and set the status bits, as defined in the functional specification of the part. The latter can not be automated in the interrupt eVC, but is assisted by it, by monitoring interrupt sources and invoking the proper interrupt service routines in the verification environment.

Separate event override registers are used regardless of the type of event status registers – RW1C or RC.

2.4 Chip Halts

The event handler has a parallel tree structure above the leaf level that produces a halt signal that can be used to freeze state machines, FIFO or register values. There is a separate halt enable register that corresponds to each leaf event status register, which can be programmed to propagate events to the top level. This will allow the freeze function to operate independent of the interrupt reporting. It will be up to the ASIC designers to determine the use of the halt signal. One possible application is to tie the halt signal to the block enables or soft resets at the chip configuration block.

[image: image3.emf]Event Hierarchy

Leaf Level

Event

Handler0 –

Level 0

Leaf Level

Event

Handler3 –

Level1

Leaf Level

Event

Handler1–

Level 0

Leaf Level

Event

Handler2 –

Level1

Summary

Event

Handler0 –

Level1

Summary

Event

Handler1 –

Level2

Interrupt and

Halt Signals

Interrupt and

Halt Signals

Interrupt and

Halt Signals

External

Interrupt

Freeze Signal

to chip config

or individual

block

Figure 3 - Event Hierarchy
2.5 First Interrupt
The first interrupt feature provides a capture register that will provide software with a record of the first status bit set in an event register. A first interrupt enable register is also provided to specify the event bits considered for capture. This feature is a lab debug function to determine the order in which errors occurred at the block or chip level. This feature will not be able to distinguish between multiple raw events that occur in a single cycle. In all other cases, the first raw event will be captured. The first interrupt feature is re-armed once the status register it shadows is cleared.
2.6 Event Counters

Event counters count every occurrence of a raw event. These are RC registers that can be used by software to check if an additional raw event occurred between the setting and clearing of a status bit. Support will be provided in the RDL library for counters but they are not instanced by default. The width of the counter will be parameterizable and will default to 2 bits.
2.7 Event Severity

Designers are encouraged to specify the severity level of an event using a severity attribute. Severity levels will allow software and verification code to discriminate between events and deal with them differently. The severity levels are documented in Table 1.
Table 1 Event Severity Description

	Severity
	Enabled by Software
	S/W requirement

	FATAL
	Always
	HW reset required, Seek redundant alternate HW

	ACTION
	Always
	SW must perform some action to handle the event

	ERROR
	Optional
	Monitor frequency if desired. Perhaps raise alarm if frequency crosses some threshold

	DEBUG
	Never
	None

2.8 Library Support

The first release of the RDL library will support the best practices set forth in this document. These are detailed in Table 2.
Table 2 Event Handler options available in Version1 of RDL+eVC library
	Property
	Characteristic

	Event Handler Structure
	Hierarchical

	Leaf Registers
	Captures raw events at the block level

	Summary Registers
	Aggregated status from leaf registers at the block or top level

	Event Clearing
	W1 to clear

	Event propagation
	Enables

	Stickiness
	Leaf bits are sticky. Summary bits are pass through

	Automated Testing for software and verification
	Override Registers at the leaf level to forces status bits.

	Chip Freeze
	Halt signal provided at the top level with separate enables to selectively freeze functions.

	First interrupt
	Records the first status bit set in a status register for lab debug

	Event Counter
	2 bit RC counters per status bit

3. RDL Syntax Extensions for Events

RDL syntax extensions allow a designer to intuitively instance abstract design components in RDL. The overall functionality of such components is based off a project template file. Designers start by using the new syntax in the block level RDL files. A pre-processor function expands the new syntax into native RDL that is processed by the blueprint tool into RTL descriptions, verification code and documentation.
This section introduces the syntax extensions available for defining events, an overview of the architectural expansion.
3.1 Introduction
For event functions three components are defined:
1. event – a leaf event at the current layer of event hierarchy. The event is like a field in RDL. It can be declared and instanced within an addrmap. It has multiple user extensible properties such as name, description, severity and action. Other properties would be propagated directly to the fields based off a project template. The project standard template will define rc/rw1c/enable/mask properties for the register bits generated. The user will not have to associate events to a specific register (set). Instead the code would generate groupings in a "nice" way. Properties allowed for leaf events are shown in Table 3.
Table 3 Leaf Event Properties

	Property
	Description

	Name
	Name of the event defined similar to RDL field name.

	Description
	Long description of the event that will be propagated to all project phases and accurately describes the purpose of the event.

	Severity
	Communicates the significance of the event and determines how software configures the event. The legal severity fields are defined in Table 1.

	Action
	Communicates how the designer expects software to handle the event.

2. eventgroup - a logical grouping of event components, specifically *not* associated w/a new layer of hierarchy. It contains events, other eventgroups or eventlayers. It can be used for naming/docs, to avoid dividing a group between autogenerated registers.
3. eventlayer - a new layer of event hierarchy. It contains events, eventgroups, or other eventlayers. To avoid creating randomly-named blocklevel layers, a default eventlayer based off the addrmap name exists for each addrmap. Any events defined outside a layer end up in the default layer. All user defined layers are collected into the default layer. It has basic name/description properties which get propagated to the registers.
Example implementations are shown below. Figure 4 shows a block that uses custom event layers. Figure 5 shows a block that uses basic event instances and allows the pre-processor to use just the default event layer.

[image: image4]
 SHAPE * MERGEFORMAT

Figure 5 Events using default event layer
3.2 Methodology Explained
RDL syntax extension processing is implemented using a library of PERL modules and a wrapper script for blueprint called blueprint-ext. The PERL modules and the wrapper script are located in /vob/asicproc/ip/csr/pm. When blueprint-ext is run with the “–pregen RDLBase” option, the RDL file is pre-processed and any RDL extensions declared are translated into an intermediate file containing only native RDL. This intermediate file is used as the starting point by the blueprint tool.
The RDLEvents PERL module does event pre-processing. The input to this module is an instance hierarchy that is created by the RDLBase module. The event processor extracts just the event instances and creates an event hierarchy from the information. Floating events in the RDL are pulled into a default eventlayer for the block. Custom eventgroups and eventlayers if used force more levels of hierarchy. A custom eventlayer will force the processor to instance a summary register level below the block level summary register. It is illegal to have floating events and eventlayers defined within a single address map. While the hierarchy is being built up, the processor restricts the number of events in a summary or leaf level group to the project template defined register width. Any eventlayer with greater than the default register width number of events will force a new level of hierarchy. Once a complete event hierarchy is established, the processor translates it into native RDL. An intermediate RDL file is created with the original event declarations commented out and the new native RDL appended. The native RDL will contain leaf level registers and summary registers to build up the hierarchy within the address map. The properties of the bits in the registers are based off the project template file. The intermediate RDL file is then passed to blueprint with all the original command line parameters. Blueprint works on the intermediate RDL file and generates output using standard code generators.
When blueprint-ext is run on the block level RDL file, only block level register slave RTL is generated. When it is run on a top level address map, the script performs some additional functions. It maintains state throughout the pre-processing and determines if an additional top level event multiplexer block is required. This top level block instances the ASIC level aggregation registers for the events generated by each ASIC block. We call this the ev_mux and it contains just a register slave. We prefer a separate ev_mux block to integrating the summary registers with an existing RP block to improve maintenance and reusability. Once all the block level address maps are read in and instanced, an ev_mux RDL file called ev_mux.rdl is generated. The pre-processor also stores away the entire event hierarchy for the ASIC as an XML file.
The process of implicitly creating a top level and a complete ASIC event map is seen as the major contribution of this methodology. It is possible to make project specific modifications to the event architecture by overloading the event pre-processor.

3.3 Register Implementation
Register level implementation of events is done using blueprint register files. Each event register is really a register file with constituent registers for status, testing, first interrupt, halt and enables. The name of the register file is based off the eventlayer declared in the RDL. For default event layers, the name is based off the block name. The bit names in the register are the same as the name of the events declared in the RDL. Table 4 and Table 5 show the constituent registers in leaf and summary level register files.
Table 4 Leaf Level Register File Constituents

	Register
	Function

	int_stat_rw1c
	Status register at the leaf level that is to be read by software. A bit that is set indicates an event. Cleared by writing a 1 to the corresponding location.

	int_stat_rw1s
	Aliased status register that is used as a test register at the leaf level to force an event. Set by writing a bit to 1.

	int_en_rw1c
	Enable register for interrupts at the leaf level used to clear an enable bit by writing a 1 to the corresponding location.

	int_en_rw1s
	Aliased enable register for interrupts used to enable events by setting the corresponding bit to 1.

	halt_en_rw1c
	Enable register for halts at the leaf level used to clear an enable bit by writing a 1 to the corresponding location.

	halt_en_rw1s
	Aliased enable register for halts used to enable events by setting the corresponding bit to 1.

	first_int
	Records first bit to be set in int_stat_rw1c

	first_en_rw1c
	Enable register for first_int at the leaf level used to clear an enable bit by writing a 1 to the corresponding location.

	first_en_rw1s
	Aliased enable register for first_int used to enable events by setting the corresponding bit to 1.

Table 5 Summary Level Register File Constituents
	Register
	Function

	int_stat_rnc
	Status register at the summary level that is to be read by software. A bit that is set indicates an event. This register can be cleared only by clearing the lower level leaf register that has the originating interrupt.

	int_en_rw1c
	Enable register for interrupts at the summary level used to clear an enable bit by writing a 1 to the corresponding location.

	int_en_rw1s
	Aliased enable register for interrupts at the summary level used to enable events by setting the corresponding bit to 1.

	halt_en_rw1c
	Enable register for halts at the summary level used to clear an enable bit by writing a 1 to the corresponding location.

	halt_en_rw1s
	Aliased enable register for halts at the summary level used to enable events by setting the corresponding bit to 1.

	first_int
	Records first bit to be set in int_stat_rnc

	first_en_rw1c
	Enable register for first_int at the summary level used to clear an enable bit by writing a 1 to the corresponding location.

	first_en_rw1s
	Aliased enable register for first_int at the summary level used to enable events by setting the corresponding bit to 1.

3.4 Usage Flow

These are the steps to integrating events with the ASIC project:
1. Create a project template file based on the pre-defined /vob/asicproc/ip/csr/rdlh/events.rdlh. This template file is an implementation of the RDL guidelines listed in this document.

2. Create $PROJ/asic/rtl/ev_mux directory.

3. Declare events in block level RDL file.

4. Run blueprint-ext at the block level to generate register slaves at the block level. This is the same as the normal blueprint flow. The only difference is that blueprint-ext calls a pre-processor function that expands the RDL syntax extensions into native RDL. Any blueprint command line parameters are passed by the wrapper to the blueprint tool. Here is an example:

%> blueprint-ext -pregen RDLBase -verilog foo.rdl

5. Run blueprint-ext at the top level with the ASIC’s top level RDL file. This generates an ev_mux RDL file in %PROJ/asic/ev_mux_rtl. In addition to documents generated in normal flow, it generates an ASIC level event map in XML format. The XML file will be used by subsequent phases in the ASIC project. Here is an example:

%> blueprint-ext -pregen RDLBase -I /vob/asicproc/verification/evc_lib/csco_addrmap/lib -codegen /vob/asicproc/verification/evc_lib/csco_addrmap/lib/xmldirect.codegen -xmldirect -dump /vob/newby/asic/top/rtl/newbyRegisters.rdl

6. Run blueprint-ext in the $PROJ/asic/ev_mux/rtl directory with the ev_mux.rdl file generated in the previous step.

7. Create a RTL wrapper for the ev_mux based off /vob/newby/asic/ev_mux/rtl/ev_mux_top.v

8. Integrate ev_mux_top with the ASIC’s top level.

4. The Verification Aspect

Verification of event functions and error handling is a major component of ASIC schedules. The event project provides a specman eVC library that leverages the RDL syntax extensions and the csco_base_env project. The layout of the eVCs is shows Figure 6. The eVC library consists of two component eVCs:

1. [image: image7.jpg]Events in the base_env

Event Data Tree
from Blueprint

ADDRMAP sequences
provide user hooks to
configure, detect,
clear and auto-test

events

but Event Lines from

\\ DUT are monitored

csco_event
unit

Sequence library

Specman Data

Tree
XML data parser
converts XML data Scoreboard
tree Il User API

csco_event data
tree

csco_event_phy
unit

‘Communicates detection
of an event

csco_event : This eVC provides data structures, sequence library, scoreboards and user APIs. The eVC builds an event tree based on a XML description of the event hierarchy. The event tree is built using a specman data struct called csco_event. The sequence library contains sequences to configure the event functions on the ASIC, detect events, clear events and auto-test certain functions. These sequences require csco_addrmap to be used. Scoreboards keep track of counts and provide check methods. User APIs allow users to update configurations, update expect counts and print debug information. This eVC is described in detail.
2. csco_event_phy: This eVC provides a wire monitoring mechanism. It monitors a wire and calls an output method port whenever there is an event on the wire.

4.1 csco_event eVC

The csco_event eVC contains event data tree, library sequences, scoreboard methods and user APIs.

4.1.1. Event Data Tree:

The event data tree is built up using csco_event_s. The fields in csco_event_s are listed in Table 6.
Table 6 csco_event_s fields

	Field
	Description

	action: string
	Action to be taken on occurence

	actual_count: list of uint
	Actual number of events detected during the simulation

	blockname: string
	Blockname

	children: list (key: name) of csco_event_s
	pointers to leaf nodes

	first_idx: uint
	first index in event type. Needed for event type list size > list size in instance

	is_enabled: list of bool
	is enabled for propagation

	is_first: list of bool
	is it a part of the first event capture

	is_summary: list of bool
	is a summary bit

	longdesc: string
	long description (for messaging)

	max_count: list of uint
	Max number of events expected

	min_count: list of uint
	Min number of events expected

	name: string
	field id

	parent: csco_event_s
	back pointer to parent in the tree

	severity: string
	severity of event

	typename: string
	typename used when moving between blocks in the addrmap

	types: list of csco_event_name_t
	event types

	wait_on_detect: bool
	wait flag for use in autotest

4.1.2. Event APIs:

Event API methods are members of the csco_event_s struct. The methods available are listed in Table 7.
Table 7 Event APIs in csco_event_s

	Method
	Description

	Addrmap_scope(): string
	Returns the addrmap_scope to be used in a register access

	Check_max(event_type: csco_event_name_t)
	Check if event count exceeded maximum allowed

	Check_min(event_type: csco_event_name_t)
	Check if event count is below minimum allowed

	debug_dump(ind: string, event_type: csco_event_name_t)
	debug dump method called by dump_tree()

	dump_tree()
	Debug print method to dump event tree along with expect and actual counts. Message tags should include CSCO_EVENT.

	enable(pathname: string, enable: csco_event_enable_t , event_type: csco_event_name_t)
	Method to update enable bit name = path.bitname, Also allow => *.* OR *.foo OR *.*.bar OR *.foo.* enable = enable(true)/disable(false),

	Enable_all(enable: csco_event_enable_t , event_type: csco_event_name_t)
	Method to update all enable bits

	get_child_scope(name: string): csco_event_s
	Method to move down the scope name = blockname1.blockname2....

	get_scope_up(name: string): csco_event_s
	Method to move up the scope name = blockname

	set_only_relevant(val: bit): list of csco_addrmap_field_value_pair_s
	Returns list of field value pairs with all but current events value reversed

	trim_all_except(name_re: string)
	Integration setup utility to trim levels from a larger tree keeping only those that match the specified pattern

	Update_count(event_type: csco_event_name_t)
	Update actual count and check if it has exceeded max allowed

	Update_exp_count(name: string, min_inc: uint, max_inc: uint, event_type: csco_event_name_t)
	Method to update expect count for an event. Name can be a dotted string. min_inc = # to increment min_count max_inc = # to increment max_count event_type = type of the event

	wait_on_event()
	Method to be called by user to force a wait until clear of an event after update_exp_count() has been called

	will_it_propagate(event_type: csco_event_name_t): bool
	Check if the event will propagate up the tree

4.1.3. Sequence Library:

The event sequence library has several classes of sequences – config, detect/clear and auto-test. The config sequences are used to program the event configuration in the ASIC. This sequence needs to be launched manually whenever required. The detect/clear sequences are launched automatically based on a triggering event from csco_event_phy. The auto-test sequences are used to test the event hierarchy and other event functions automatically. All the sequences are launched with a constrained event scope field. The event scope is set to a node in the event data tree. The sequences available are listed in Table 8.
Table 8 Sequence Library

	Sequence
	Class
	Function

	ENABLE_CFG'event_seq_kind CSCO_EVENT'kind
	Config
	Enable events based on config in csco_event tree

	DISABLE_CFG'event_seq_kind CSCO_EVENT'kind
	Config
	Disable events based on config in csco_event tree

	DETECT'event_seq_kind CSCO_EVENT'kind
	Auto launched
	Identify triggering event by reading summary and leaf nodes

	CLEAR'event_seq_kind CSCO_EVENT'kind
	Auto launched
	Clear the triggering event by performing a write

	AUTO_TEST'event_seq_kind CSCO_EVENT'kind
	Auto-test
	Test integrity of the event tree and enable/disable

	AUTO_SUMMARY_TEST'event_seq_kind CSCO_EVENT'kind
	Auto-test
	Test summary events by forcing leaf events and then enable/disable summary bits.

4.1.4. Integration of the eVC:
The csco_event eVC is integrated in the csco_base_env. The XML populate file csco_event/e/parser/csco_event_xml_parser has to be imported separately in the ASIC testbench.

For integration details see:

/vob/asicproc/verification/evc_lib/csco_base_env/e/csco_base_env_event.e – Integration of the eVC with base environment.

/vob/newby/verification/testbench/newby_common/e/newby_common_event_inst.e – Constraining the csco_event eVC in an ASIC environment.

For unit level testbenches, the event data needs to be pruned to include only relevant elements. The trim_all_except() method is used for this purpose.

4.1.5. Integrating Error Tests:

The event eVCs provide user hooks and APIs to facilitate error testing. Start by setting up the configuration of the event tree. Launch an ENABLE_CFG addrmap sequence with an appropriate event scope to configure the event tree. Force an error and call wait_on_detect() if it is required to wait on detection of the event associated with the error. The wait_on_detect() method is a TCM that will return once the event is cleared. Use the post_clear_seq and pre_clear_seq hook sequences to perform event specific tasks. These sequences are launched with the event scope constrained.
5. Appendix
<START OF THREAD on WC Versus RC event registers>

Tim Ganley:

Team,

Something to consider.....

Regarding the section on event clearing:

"Events are cleared by addressing the raw error condition and clearing the status bit in the originating register. It is preferred to select RW1C (Read+Write 1 to Clear) as the default status register type. This allows software to use multi-threaded Interrupt Service Routines and directly control the clearing of the status bits. The other option, which is not recommended is to use a RC (Read to Clear) type status register. The RC option does have the advantage of registering a raw event that occurs after the first read to clear operation by software. This presents limitations to ISRs and precludes independent handling of each raw event in a status register."

Some systems implement write posting which can cause significant latency between the time the software thinks it clears the interrupt and when it actually happens. In systems that implement write posting "Read to Clear" is safer and/or more thorough thought needs to be put into the whole interrupt scheme.

Al Slane described one example of a race condition that was seen on "JIB": 2 packets relatively close together, long lapse, more packets. In this case, the first packet causes an interrupt. If the second packet arrives and causes an interrupt in the time window of sw thinking it is done and the bit actually being cleared (this is a bus latency and write posting latency issue), then you will not get the second packet until after the long lapse and the following packet arrives causing a new interrupt.

Comments?

Thanks,

--Tim

<end>

Alvar Dean:

The issue is not whether two events will be seen as one or two, rather whether an event was missed altogether. What Tim mentioned is what I was saying from the beginning, if you check the email threads about interrupts, and the reason that we must support both RW1C and RC. RC may only be used on selective int. bits, while RW1C may be used for most others, but nevertheless it is usefull.

To illustrate a case where RW1C misses an event but RC does not, please follow this scenario:

- Lets assume that SW does not need to know how many times the event occurred, but simply that it has occurred. For example, if the event says that there are one or more packets waiting in a queue to be processed (I think the JIB case was something like this).

- Packets A, B, and C arrive as follows and set the event status bit as soon as they occur:

 A B C

- If the RC reads the status REG between A and B, it will clear it, but as soon as B arrives, the event reg will get set again.

 If the RC reads the status REG right after A and B, the interrupt process will still see packets A and B in the queue, and process them both.

 In either case, C does not get processed until it arrives, since it is MUCH later, which is fine.

- If a RW1C reads the status REG between A and B, it will see packet A, process the queue, and Write a 1 to clear the bit. If the write, due to posting or other latencies, does not occur until after B arrives, the write will clear the fact that packet B is ready, and thus the packet B event is missed. Packet B will have to sit in the queue until packet C arrives, which can be much later.

Alvar

<end>

Al Slane:

The problem is not seeing multiple events as one, that is actually a good thing as they get batched. The problem is missing the last event, because it occurs in the window. It becomes a problem when no new event happens, so the event is effectively lost for a long time. With read and clear, this does not happen. The SW issues raised are valid in that read side effects can be hard to deal with, and write and clear does make multi-threaded code harder to deal with. The way around this is to have a proxy, that does all of the real read/writes to the event regs, and then passes the info to the proper threads for processing. If SW is using the int pin to kick off processing, there can only be one thread that deals with this anyway. I have written this code, and it has its own pit-falls.

The big thing that read and clear provides, is optimized number of bus transactions, as you only do a read and you are done. With write and clear, you read, write, then do another read to flush the posted writes, not to mention that you write once per bit that is on. In today's environment this is not a big deal as there is usually plenty of bus bw.

The bottom line is that write and clear is easier to deal with from a SW perspective, but you need to make sure that status is captured correctly based on what you are trying to convey.

The original design that we were talking about was flawed, but it points out the issues you need to think about. The original system (not any of ours by the way) was using edge triggers to signal something that really should have been level based (packets have arrived to process). This is a great example, of something that just does not work with pulses, and should have had a counter and level based status to work properly (with either read and clear or write and clear).

So, to address this, we need to make sure that the doc talks about when to use pulses and level based status. We could provide a read/clear alias, but that might cause more problems, as that gives SW one more thing to do wrong (read the wrong reg). As we move to 64-bit regs though, it might be easy to have two 32-bit regs (aliases) in a single 64-bit slot.

<end>

Spadix:

so, what i can't seem to grasp is why a read followed by a write to clear the bit isn't functionally the same as a read-clear side affect - independent of posted latencies and recurring events?

first, just to validate an assumption i'm making:

we are not claiming that the posted write latencies involve any transaction re-ordering, right?

i'm assuming that ensuring ordering between transactions over protocols which support re-ordering is another discussion which we can separate from this one (such protocols must have a way to enforce specific

 transaction sequences, which must be applied

 appropriately...again, outside current scope)

anyway, let's use Alvar's example below, which seems to be an elaboration of the original:

On 10/19/2005 07:43 AM, Alvar Dean (aldean) wrote:

> The issue is not whether two events will be seen as one or two, rather

> whether an event was missed altogether. What Tim mentioned is what I

> was saying from the beginning, if you check the email threads about

> interrupts, and the reason that we must support both RW1C and RC. RC

> may only be used on selective int. bits, while RW1C may be used for

> most others, but nevertheless it is usefull.

>

> To illustrate a case where RW1C misses an event but RC does not,

> please follow this scenario:

>

> - Lets assume that SW does not need to know how many times the event

> occurred, but simply that it has occurred. For example, if the event

> says that there are one or more packets waiting in a queue to be

> processed (I think the JIB case was something like this).

> - Packets A, B, and C arrive as follows and set the event status bit

> as soon as they occur:

>

> A B C

>

> - If the RC reads the status REG between A and B, it will clear it, but

> as soon as B arrives, the event reg will get set again.

> If the RC reads the status REG right after A and B, the interrupt

> process will still see packets A and B in the queue, and process them

> both.

> In either case, C does not get processed until it arrives, since it

> is MUCH later, which is fine.

>

> - If a RW1C reads the status REG between A and B, it will see packet

> A, process the queue, and Write a 1 to clear the bit. If the write,

> due to posting or other latencies, does not occur until after B

> arrives, the write will clear the fact that packet B is ready, and

> thus the packet B event is missed. Packet B will have to sit in the

> queue until packet C arrives, which can be much later.

>

i think the hole here is how the software handling has been represented...as suggested, if software processes the event before clearing it, they insert a window for missed events. if instead they fix their ISR to clear the bit before processing starts, it should work parallel to the read-clear example

there is some detail missing here about what "processing"

involves for an event, which also goes back to the assumption i mentioned about transaction ordering.

presumably (ah, another assumption) software needs some other access to find the work that needs doing?

for example: reading a counter, pointer or buffer to get the packets? if the write is posted before this processing access, and they don't get reordered there should be no hole for missed events?

the worst case is that a new event occurs just after the write-clear and just before processing, causing the interrupt to retrigger w/no work todo.

but this is again the same as the read-case and i don't think anyone is concerned by it(?)

so what am i missing? :)

-spadix

<end>
Al Slane (aslane):

Ok, there are a lot of assumptions, and that is why some people are missing some thing ;-)

The problem is that there are a lot of ways for SW to process ints (events). For example, do you use the enables (unmask and mask) or just the status bits? Are you trying to minimize the number of times the int handler gets invoked? Are you trying to minimize bus bw? Do you want to minimize the time in the int handler? Does any real work get done in int handler?

Depending how you look at all of the factors, you can morph this discussion all over the place. Unfortunately, I would suspect that the different platforms may process events in different ways, so there might not be a single answer (notice I did not say right answer).

Typically, when write to clear is used, the clear is done after processing, not first (at least that is what I have seen, but again it depends how you use the enables also). In this case, hopefully everyone now sees why you can lose events (there is a window/race condition).

Now moving the write to clear to be first is interesting, and may close the window. However, I would suspect that you would not want to take ints with no real work to do, even though it may be harmless it does use up cycles and causes a context switch. I have also seen platforms that consider this an error (spurious int). I am not sure how Cisco SW deals with this issue.

So, like I said before write and clear is fine, but we just need to make sure people defining the events know how to generate them and how SW will process them so there are not holes (whether the write is first or last in processing).

<end>
Spadix:

hey Al-

thanks for taking the time for the nice description, i really appreciate it...

On 10/19/2005 02:14 PM, Al Slane (aslane) wrote:

> Ok, there are a lot of assumptions, and that is why some people are

> missing some thing ;-)

>

> The problem is that there are a lot of ways for SW to process ints

> (events). For example, do you use the enables (unmask and mask) or

> just the status bits? Are you trying to minimize the number of times

> the int handler gets invoked? Are you trying to minimize bus bw? Do

> you want to minimize the time in the int handler? Does any real work

> get done in int handler?

>

> Depending how you look at all of the factors, you can morph this

> discussion all over the place. Unfortunately, I would suspect that the

> different platforms may process events in different ways, so there

> might not be a single answer (notice I did not say right answer).

>

these are all excellent points

> Typically, when write to clear is used, the clear is done after

> processing, not first (at least that is what I have seen, but again it

> depends how you use the enables also). In this case, hopefully

> everyone now sees why you can lose events (there is a window/race condition).

>

 > Now moving the write to clear to be first is interesting, and may close > the window.

 >

i noticed that Kip indicated checking the event source again after clearing...this may be a more conventional way to deal w/it - although it adds extra accesses, which goes back to the design intent you mentioned above

> However, I would suspect that you would not want to take ints with no

> real work to do, even though it may be harmless it does use up cycles

> and causes a context switch. I have also seen platforms that consider

> this an error (spurious int). I am not sure how Cisco SW deals with

> this issue.

>

in the functional example presented,

the same situation exists with a RC approach (packet arrives between the event RC and the processing).

so i guess there must be some established way to deal w/it?

anyway, we don't really need to get into it, as you mentioned, this falls to designers to resolve for each specific case...

> So, like I said before write and clear is fine, but we just need to

> make sure people defining the events know how to generate them and how

> SW will process them so there are not holes (whether the write is

> first or last in processing).

>

excellent, just to close clearly, here is a quick summary of what was discussed as it relates to the current effort.

i think we already have everyone in agreement:

 - every project/system needs to carefully consider

 the way that it defines/uses events (of any type).

 some documentation could be enhanced to point out

 advantages and common pitfalls of approaches but

 it really needs to be hashed out between the parties

 involved (designers, software, platform, etc...)

 - as far as RC/W1C, i think we agreed that,

 barring legacy support, we cannot find a case

 where W1C events cannot be used?

 this doesn't suggest there isn't a case,

 or that some circumstances won't require RC

 - so the guidelines will continue to promote W1C and

 discourage the use of RC. this applies primarily to

 new architectures with little legacy baggage.

 the final choices are always project specific

 - in general, a project can always deviate from the

 guidelines, especially for the well known cases of

 legacy platform and specification support which

 the guide does not attempt to address

 - i'm not sure that this was made clear, but

 implementation cost of such deviation is very small.

 real cost is in verification and software support of

 alternatives - once we have a pushbutton approach to

 these and more consistency between projects, those

 will be compelling arguments to stick w/the guide

thanks!

-spadix

<end>
Alvar Dean:

Spadix, Good summary ! I agree.

<END OF THREAD>
<Thread with explanation of event severity choices>

Alvar Dean (>).

>> Actually, it would be nice to make the designer pick a severity for

>> an event. Spadix suggested this (from BW) -

>>

>> FATAL - should never happen, requires reset (FIFO overflows...)

>> ERROR - something bad, may need reset, might happen someday

>> (dp MBEs...)

>> WARNING - might happen, but not often, no reset (SBEs, packet errors,

>> etc) REFRESH - ECC error in config value (cfg MBEs...)

>> DEBUG - part of a debug feature, usually masked for production

>>

>> This will be useful for verification and software people.

>

>A severity keyword would be helpful. I think the levels should be

>categorized for the SW, since they are the ultimate user of the HW and

>the DOC. The question SW usually asks is which events it should enable,

>which events does the HW handle but simply raises an "FYI", which

>events is the HW simply saying "SW this is for you to handle", and

>which is the HW saying that it can't handle and SW needs to reset the

>HW.

>

>I like the idea of a DEBUG level for events that are put there simply

>for lab/diags debug, and thus SW NEVER needs to enable or worry about.

>

>The FATAL level is also simple. These are the ones that SW should

>ALWAYS enable, and for which it needs to perform some corrective

>action, such as switching to a backup card while reseting the bad card,

>or something like that.

>

>The non-debug and non-fatal ones are the though ones to categorize. I

>think they fall under two categories:

>

>1) The first type are non-fatal errors where the HW can handle the

>event and is simply notifying the SW, whether it is a SBE, a MBE or

>packet drop due to FIFO overflow, if it is gracefully handled by the

>HW, SW does not always have to get involved.

>For these events SW CAN but does not HAVE to enable the events.

>

>2) The second type are informational events which the HW does not

>handle, and although not necessarily error conditions, MUST be handled

>by the SW. Examples of this are OIR events, DMA buffer ready, etc. For

>these the SW MUST enable them and handle them.

>

>Based on this, my recommendation for guidelines would be something

>like: (the actual names don't matter, but intent and effect of SW is

>what is important):

>

>Severity Enabled by SW SW Action

>------------- ------------------------ ----------------------

>FATAL Always HW reset required, Seek

>redundant alternate HW

>ACTION Always SW must perform some

>action to handle the event

>ERROR Optional Monitor frequency if

>desired. Perhaps raise alarm if frequency > some threshold

>DEBUG Never None

>
<end>
addrmap foo {

eventlayer {

 event shiftEvent_e {

 severity = WARNING;

 action = "check configuration or capture corrupted packet";

 desc = "this describes the event to the user";

 };

 eventgroup shiftEvents_eg {

 shiftEvent_e pastEOP;

 shiftEvent_e overflow;

 };

 shiftEvents_eg priShift;

 priShift.pastEOP->desc =

 "L3 priority field specified bytes after the EOP byte of a packet.”

 priShift.overflow->desc =

 "L3 priority field offset (shimSize + L2Tmpl.initOffset +

 L2Attr.L3Offset + priAttr.priFieldLSB)

 specified bytes outside the first 24 bytes of a packet.

 priority field classification was disabled";

 shiftEvents_eg protoShift;

 protoShift.pastEOP->desc =

 "L2 protocol field offset

 (shimSize + L2Tmpl.initOffset + L2Attr.protoOffset)

 specified bytes after the EOP byte of a packet.

 TCAM classifications were disabled";

 protoShift.overflow->desc =

 "L2 protocol field offset

 (shimSize + L2Tmpl.initOffset + L2Attr.protoOffset)

 specified bytes outside the first 24 bytes of a packet.

 TCAM classifications were disabled";

 shiftEvent_e L2TCAMPastEOP {

 desc = "specific L2 TCAM comparison

 (shimSize + L2Tmpl.initOffset + L2TCAM.Bytes[addr])

 accessed bytes after the EOP byte of a packet before a

 match was made. the TCAM entry was disabled";

 };

 } SPA[2];

 eventlayer {

 event Out_of_frame {

 severity = WARNING;

 action = "read out of frame error count and send message to upstream device";

 desc = "this describes the event to the use";

 };

 eventgroup FrameEvents_ig {

 Out_of_frame ctrl;

 Out_of_frame data;

 };

 FrameEvents_ig krypton[3:2];

 FrameEvents_ig toaster[1:0];

 } Ingress;

};

� EMBED Visio.Drawing.11 ���

Figure � SEQ Figure * ARABIC �1� - Event Handler Logic at the Leaf Level

Figure � SEQ Figure * ARABIC �4� Example with custom event layers

addrmap bar {

 event bad_addr {

 severity = WARNING;

 action = "Enter a software action here";

 desc = "Event - CPU accesses non-aligned register.

 (1 = Active, 0 = Not Active).";

 };

 event rrto_newby {

 severity = WARNING;

 action = "Enter a software action here";

 desc = "Event - Read Request Timeout for Newby internal reg.

 (1 = Active, 0 = not Active)";

 };

 event noreg {

 severity = WARNING;

 action = "Enter a software action here";

 desc = "Event - Register not implemented (1 = Active, 0 = Not active)";

 };

 bad_addr bad_addr;

 rrto_newby rrto_newby;

 noreg noreg;

}

Figure � SEQ Figure * ARABIC �6� Event eVC layout

Cisco Systems, Inc.
3
Company Confidential

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

_1191068656.vsd
Enter Text
Enter More Text

Title
￼

Event Handler at the Top Level

Event Enable Register

Status Register

Halt Enable Register

Event from Leaf level or lower summary level

External Interrupt

Halt signal to freeze functions

_1191156059.vsd
Register

A

H

Q1

Q8

ENB

Register

A
D

Q1
Q4

ENB

Register

A

H

Q1

Q8

ENB

Title
￼

Double-click here and type
notes.

Title

Double-click to type
notes. Subselect "Title"
to edit the title.

Enter Text
Enter More Text

f

nf

n

Title
￼

Leaf Level Event Handler3 – Level1

Leaf Level Event Handler1– Level 0

Leaf Level Event Handler2 – Level1

Summary Event Handler0 – Level1

Summary Event Handler1 – Level2

Event Hierarchy

Interrupt and Halt Signals

Interrupt and Halt Signals

Interrupt and Halt Signals

External Interrupt

Freeze Signal to chip config or individual block

Leaf Level Event Handler0 – Level 0

_939650748.doc

_1191009911.vsd
Register

A

H

Q1

Q8

ENB

Register

A
D

Q1
Q4

ENB

Register

A

H

Q1

Q8

ENB

Title
￼

Double-click here and type
notes.

Title

Double-click to type
notes. Subselect "Title"
to edit the title.

Enter Text
Enter More Text

f

nf

n

Title
￼

Event Handler at the Leaf Level

Event Enable Register

Override Register

Status Register

Halt Enable Register

Raw Events

To Summary Layer

Interrupt Event to Summary Layer

Halt Event to Summary Layer

