1 Directory Structure

1.1 eRM packages

In this document, the basic atomic units of our reusable verification resources are eRM packages (hereafter referred to simply as "packages"). Using packages provides a consistent, pre-defined layout which is not necessarily specific to the e language and is designed to be easily extended for our purposes. To facilitate clean reuse, all verification specific files shall be located in a package. The remainder of this section will define naming conventions, directory locations and type of content for these packages, their files and the library directories that contain them.

1.2 Layers of reuse

To detail the physical structure imposed on packages, it is necessary to understand the existing logical reuse structure. Keeping the logical structure in mind will help designers with the physical mapping of files into packages and packages into libraries.

Package reuse can be loosely generalized as a hierarchical pyramid of layers, where each layer depends on the supporting layers upon which it is built. A package will never depend on a package from a higher layer - dependencies are normally only on (any of) the lower layers, with an occasional intra-layer exception (mostly due to simplification of the diagram).

From a project's perspective, there are at least six well-defined layers of reuse as shown in Figure 1:

[image: image1.wmf]
Figure 1 Generalized Layers of Reuse
1. support packages - the foundations of our reuse pyramid, packages which often require no other dependencies. In many cases they may not even be full "eVCs", simply containers for commonly used utilities, data structures and APIs. (This is the only layer where intra-layer reuse is really anticipated)

2. interface eVCs - models which communicate with their physical RTL counterparts, typically implemented as fully eRM compliant eVCs. Virtual or abstracted interfaces without a physical parallel would also be represented here.

3. device eVCs - formerly known as "scoreboards", "evaluators" or "checkers" these are really "device models" which contain all of those functions - collecting transactions from interface eVCs and implementing all of the processing required to determine if it is functioning properly. Note that although these models typically do not instance interface models, they do depend on them for transaction type definitions, etc.
Our current projects only implement and use devices in the completely passive verification mode. If it became interesting, the full eRM definition of a device provides for an active mode allowing the device to replace hardware or for use in architectural models, etc.

4. project common extensions - containing the bulk of the "testbench" code. This package instances the RTL DUT, has files to instance and connect eVCs in the generic base environment, constrain the DUT configuration, define virtual sequences for testcases, etc.

5. project testbenches - thin layers on top of common which setup the environment to test only the targeted section of the device, and contain testcases for that target. Notice that the top level project_asic_tb is included in this layer as it does not depend on the unit level testbenches - instead it is just the specific use of the common testbench layer that targets the entire device.

6. system environments - represented here only to indicate that reuse does not stop at a project's testbenches. This methodology is designed to allow verification projects to be reused by higher-level verification efforts
1.3 Terminology

To ensure clear specification, several terms used in the naming of directories and files are explicitly defined here. Terms replaced by specific names are indicated in italics.

	project
	The full project name

	proj
	The optional, agreed upon, project abbreviation. If used by a project, it must be used where proj is specified and never where project is specified

	pkg
	Any verification package name. All packages have eRM semantics

	blk
	The name of a target for "unit" or "block" level verification. Note that these may be distinct from RTL modules, as a module may be merged or split for verification purposes. In the case of a merge, the names of the merged blocks shall be concatenated with "_" to form blk. Otherwise the name should match the RTL as closely as possible (same abbreviation, etc)

	intf
	The name of an interface, either external or internal. Any well-defined name for the interface shall be used directly. If such a name does not exist, the interface is referred to as "anonymous".
An anonymous interface which is obviously associated with a single blk shall be named

blk[_type]

where the optional type specifier can be used to differentiate multiple occurrences of such interfaces.
For an anonymous interface between two blocks use the form

srcblk_dstblk [_type]

Use any obvious local directionality to order the block names, falling back to system level directionality if necessary.

	test
	The name of a testcase, shall not contain the word "test", or the name of the containing package

1.4 Library directories

1.4.1 common library directory

At the lower layers of the pyramid, a component package may be considered useful only to the current project, or potentially useful to many projects. In general commonly useful packages will include almost all utility packages from layer 0, most external interface eVCs from layer 1, some internal interface eVCs from layer 1, and occasional device eVCs from layer 2 (e.g. corresponding to common RTL IP). When a new package is conceived, the designer should carefully consider if it is really project specific or common, and locate it appropriately. A single common library directory exists to collect these packages:

/vob/asicproc/verification/evc_lib

All locally developed packages shall live in this directory and shall use the approved company prefix "csco_". Externally developed packages may also be imported here, using the "shr_" or external company prefix already attributed to the package.

1.4.2 project specific library directories

Two project library directories are specified based on the logical arrangement represented by the layers of reuse: one for interface and device models, and one for testbench packages. All project specific packages shall live in the specified directory and shall use the project_ or proj_ prefix as indicated below.

Notice the overlap in the site common and project specific spaces; there should be no confusion regarding package location as the package name prefix clearly identifies its home.

1.4.2.1 project model library

This library directory holds the interface and device models specific to a project (layers 1 and 2). Typically support packages (layer 0) will be located in asicproc common space, but if a project specific support package is identified, it shall also live here. The library shall be located at:

/vob/project/verification/evc_lib

It shall contain the compulsory LIBRARY_README.txt file with this content:

* Title: project models

Interface eVCs are located in this library and shall be named:

proj_intf_intf

Device eVCs are located in this library and shall be named:

proj_blk_dev

1.4.2.2 testbench library specification

This library directory holds the project common testbench code, unit level testbenches, and toplevel testbench (layers 3 and 4). The library shall be located at:

/vob/project/verification/testbench

It shall contain the compulsory LIBRARY_README.txt file with this content:

* Title: project testbenches

There shall be a single package to contain all of the common code used by the testbenches. It shall exist and use the same semantics even if there are no unit level testbench targets. It shall be named:

proj_common

There shall be a single testbench package which targets the entire DUT for top level verification. It shall exist and use the same semantics even if there are no unit level testbench targets. It shall be named:

project_asic_tb

There shall be a separate package for each DUT component which has been targeted for unit level verification. Each one shall be named:

proj_blk_tb

1.4.2.3 external IP

It is also of interest to promote reuse of third-party and legacy verification IP (denoted "external IP") which is not already handled by our structure. In general, external IP should be located in its own eRM package similar to every other verification component. Vera, e, verilog, and C environments should be moved into packages with appropriate subdirectories. Any code added locally to splice the non-native structure into our flow would live in the same package, promoting reuse of the integrated whole by other projects.

If the external IP represents an interface or device model, this external IP package would live under evc_lib. Entire test environments would be ported under testbenches.

As a contingency for the unlikely event that it becomes excessively time consuming to restructure external IP into packages, it can simply be copied unmodified under

/vob/project/verification/external

The structure of this optional directory is intentionally left free-form. Obviously this case should only be viewed as a last resort.

1.5 package internal structure

Given these package names and locations, a few additional constraints are imposed on the contents of a package.

Every package shall contain the PACKAGE_README.txt file specified by eRM. At a minimum the three fields required by eRM ("Title", "Name", and "Version") as well as the "Support" contact shall be included, use of other fields is not specified. A few additional constraints are placed on the contents of the required fields:

	* Title
	Shall have project acronyms expanded

	* Version
	This field is required by eRM but not currently used and does not need to be maintained by the package developer. (An investigation is underway into having cclabel to recognize and promote package versions...)

	* Support
	Shall contain a comma separated list of RFC-822 addresses for at least one testbench maintainer. Simple userid is preferred although full email address can be used. Personal names which are not part of an address are specifically disallowed.

To avoid collisions and make files easier to find, files in package sub-subdirectories shall include the intervening directory names in the file name:

pkg/e/seq/pkg_seq_errors.e

Additionally, an upper limit of two additional layers of directory hierarchy is imposed on the trees under each top level package directory. File name prefixes can be used to provide additional grouping. An example of the deepest file in a package might be:

pkg/e/level0/level1/pkg_level0_level1_top.e

The following content types have package top level directories specified. There may be additional content types not covered by this specification for which a new directory is desirable. To promote consistency and facilitate reuse, please amend this specification (including a review) with the new name.

1.5.1 specman source

As specified by eRM, e source code shall be located in the tree under:
pkg/e/

which should contain a top level file that imports all of the files that will always be required to use the package. Note that this is often not the entire file set contained within the package.

Source code representing sequence definitions shall always be located in the subdirectory:

pkg/e/seq/

Source code representing coverage definitions shall always be located in the subdirectory:

pkg/e/cov/

Package specific interface or device extensions should be in an appropriately named file:

pkg_intf_intf[_*].e

pkg_blk_dev[_*].e

An example being the interface and device instance files in proj_common, which shall be called:

proj_common_intf_intf_inst.e

proj_common_blk_dev_inst.e

1.5.2 verilog source

An additional package top level directory is specified to contain any verilog support files required by the package (or the bulk of verilog based external IP):

pkg/verilog/

The top level DUT instance in proj_common is an example of verilog content. It shall be named:

proj_common/verilog/proj_common_testbench.v

1.5.3 testcases

Each testbench package contains all of the testcases specific to its target. These testcases shall live in the directory:

pkg/test/
Under this directory there shall be exactly one directory layer, which we will refer to as the testcase "categories". The category names defined by this specification are:

sanity, random, intf, perf, reg, interrupt, error

Other category names may be added as needed (again, please standardize new names if applicable). Each of these category directories contains a directory for each testcase in the category, with at least a _top file in the testcase directory. Bringing all of this together, a testcase shall have a name of the form:

pkg/test/category/test/pkg_test_category_test_top.e

Additional details concerning the contents of the testcase leaf directory and splitting testcases into reusable and non-reusable components can be found in [the appropriate section of this document].

1.5.4 package binaries

OS independent scripts which are related only to a specific package may be located under the optional "bin" subdirectory. Architecture specific binaries are excluded as they need to be handled by our standard application binary process. No files other than executable scripts shall be located under "bin". If necessary, The optional "lib" package directory may be used for libraries (e.g. perl module libraries).

1.5.5 miscellaneous files

Following standard UNIX convention, all miscellaneous files shall be located under "etc". This includes all makefiles, testlists, configuration files, etc. Some names of known files are specified here:

pkg/etc/makefile.e

pkg/etc/makefile.verilog

pkg/etc/testlist.all

pkg/etc/testlist.category
pkg/etc/hdl.cmd

1.5.6 external IP

The e, vera, c and verilog directories are specified to contain external IP of the corresponding type. These spaces are free form for external IP and, although it is strongly recommended that external IP be reformatted to match this document as much as possible, many of the naming conventions presented in this section can be relaxed at the developer's discretion.

1.6 Directory structure quick reference
1.6.1 library directory structure
	/vob/asicproc/verification/
	Existing common verification resources

	
evc_lib/
	Existing shared eRM package library. Any new packages developed by a project should be located here if several other projects might use them (e.g. external interface models)

	
csco_pkg/
	All locally developed packages in this directory shall use the company prefix

	/vob/project/verification/
	Project verification top level directory tree

	
testbench/
	eRM-style library for testbench packages

	

LIBRARY_README.txt
	Compulsory

* Title: project testbenches

	

proj_common/
	Package shared between testbenches

	

project_asic_tb/
	Top level testbench environment package

	

proj_blk_tb/
	Block level testbench environment packages

	
evc_lib/
	eRM-style library for project models. Parallels asicproc structure

	

LIBRARY_README.txt
	Compulsory

* Title: project verification library

	

proj_intf_intf/
	Interface model packages

	

proj_blk_dev/
	Device (scoreboard/evaluator/checker) model packages

1.6.2 package directory structure

	pkg/
	A package in any of the three library directories used by a project

	
PACKAGE_README.txt
	Compulsory: include at least these minimum fields:

* Title
Shall have project acronyms expanded

* Name
Shall match package name

* Version
Required by eRM (not currently used)

* Support
testbench maintainer(s) userid(s) (or email)

	
e/
	Specman code for this environment

	

pkg_top.e
	eRM specified

	

seq/pkg_seq[_*].e
	Lbrary of package related sequences

	

cov/pkg_cov[_*].e
	package related coverage definitions

	

pkg_intf[_*].e
	Interface extensions specific to package (esp in proj_common), e.g.

proj_common_intf_intf_inst.e

proj_common_dev_dev_inst.e

	
verilog/
	Any verilog modules coupled to this package (tb top, stubs, etc)

	

pkg_testbench.v
	Testbench top level verilog module containing DUT instance, usually located in proj_common

	
test/
	Testcase collection directory, normally under a testbench

	

category/
	A single additional level shall be specified

	

test/
	Individual testcase directory

	

pkg_test_category_test_top.e
- Testcase toplevel file

	
etc/
	Any package specific miscellaneous files

	
bin/

lib/
	Any package specific scripts

	
vera/

c/
	Optional containers for external IP

