1 Messaging and Errors

1.1 Error messages

There are two types of errors, namely DUT errors and testbench errors. DUT errors are caused by unexpected or incorrect behaviors in the RTL code of the device under test. Testbench errors are caused by unexpected or incorrect behaviors in the testbench code.
DUT errors must be flagged with the dut_error() or dut_errorf() e functions.

Testbench errors must be flagged with the error() function. The error() function, however, does not report e line numbers when called by itself and should always be used in conjunction with an assert statement. The presence of the assert statement ensures that the line number and location of the offending code is correctly reported in the simulation logfile. For error checks, the code syntax is:

Assert <condition must be true> else error(<report string>);

For a default statement in a case construct (or when the error condition is checked elsewhere, the code syntax is:

Assert FALSE else error(<report string>);

1.2 Message Verbosity Guideline
The verbosity for all messages should use the following guideline:
	Verbosity
	Guideline

	NONE
	Critical messages that users will always want to see. This includes error messages and any debug info that will be helpful to anyone looking at the logfile e.g. heads of expected packet queues and packet data. It also includes the test phases. (This message level cannot be disabled.)

	LOW
	Messages that occur once per run or once per reset. This includes configuration information, start of traffic, end of traffic etc.

	MEDIUM
	Short messages for events occur that once per data item or sequence. This includes “Packet X was sent to…”, “Packet Z was received at…”, Register writes and reads etc.

	HIGH
	More detailed per data item information. This includes all the packet data and routing decisions etc.

	FULL
	Anything else, including message prints in specific methods (just to follow the algorithm of that method) and debug information.


The NORMAL (default) tag should be used for all messages that would have global interest. Each eVC should contain its own <evc name>_DEBUG tag for messages that are used to debug the eVC.

The inclusion of the CSCO_VERBOSITY eVC allows the message verbosity to be easily controlled from an external file during a simulation.
