

Switching Waveform Analysis

Inductor Current Analysis

sml 6/1/2023 v1.0

Analysis of Boost Converter Simulated Output Voltage Waveform

sml 6/1/2023 v1.0

Boost Converter Component Values used in Deriving Output Voltage in Continuous Mode of Operation

sml 6/1/2023 v1.0

Expected Boost Converter Output Voltage in Continuous Mode of Operation for Chosen Parameters

$$V_{out} = \frac{V_{in} - I_L R_s}{1 - D_u} - V_{DS2} - V_{DS1} \frac{D_u}{1 - D_u}$$

Equation (1) derived from reference [2]

Case 1: Your components with my estimates for vds and rs

Parameter	Value	Units
vin	0.5000	Volts
iload	0.0345	Α
rs	2.0000	ohms
duty_cycle	0.6550	
vds1	0.1000	Volts
vds2	0.1000	Volts

vout	0.9594	Volts
		

Case 2:
"ideal" components
(vds = 0, rs = 0)

Parameter	Value	Units
vin	0.5000	Volts
iload	0.0345	Α
rs	0.0000	ohms
duty_cycle	0.6550	
vds1	0.0000	Volts
vds2	0.0000	Volts

vout	1.4493	Volts
------	--------	-------

Case 3:
Your components,
optimized duty cycle, with my estimates
for vds and rs

Parameter	Value	Units
vin	0.5000	Volts
iload	0.0345	Α
rs	2.0000	ohms
duty_cycle	0.8680	
vds1	0.1000	Volts
vds2	0.1000	Volts

vout	2.5076	Volts
	#	

Value of 959 mV is somewhat close to your measured value of \approx 850 mV

Increasing duty cycle to 86.8% sets value close to desired value of 2.50 V

On-line Boost Converter Design Example: 0.50 V input/2.50 V output, 37.5 mV Inductor current and 100 mV VDS^[3]

Topology: Boost

Inductance based on the specified minimum load current.

ltem	Value	Units
Volts In	0.50	V
Volts Out	2.50	V
Load Current	37.5e-03	A
Freq.	1000	KHz
Vripple	0.025	v
Duty Cycle	84	%
pp Inductor	0.00375	А
pk Inductor	0.039375	А
irms	0.035641443573458	А
L	89.6	uH
C	1.26	uF

Duty cycle to of 84% is quite close to computed value of 86.8% on Page 4 to set vout close to desired value of 2.50 V