
Cadence Verilog-A Language Reference
Analog Probes and Sources

October 2023 357 Product Version 23.1
© 1996-2023 All Rights Reserved.

The model for a current-controlled current source is
branch (ps,ns) in, (p,n) out;
I(out) <+ A * I(in);

Unassigned Sources

If you do not assign a value to a branch, the branch flow, by default, is set to zero. In the
following fragment, for example, when closed is true, V(p,n) is set to zero. When closed
is false, the current I(p,n) is set to zero.
if (closed)

V(p,n) <+ 0 ;
else

I(p,n) <+ 0 ;

Alternatively, you could achieve the same result with
if (closed)

V(p,n) <+ 0 ;

This code fragment also sets V(p,n) to zero when closed is true. When closed is false,
the current is set to zero by default.

Switch Branches

Switch branches are branches that change from source potential branches into source flow
branches, and vice versa. Switch branches are useful when you want to model ideal switches
or mechanical stops.

To switch a branch to being a potential source, assign to its potential. To switch a branch to
being a flow source, assign to its flow. The circuit model for a switch branch illustrates the

Cadence Verilog-A Language Reference
Analog Probes and Sources

October 2023 358 Product Version 23.1
© 1996-2023 All Rights Reserved.

effect, with the position of the switch dependent upon whether you assign to the potential or
to the flow of the branch.

As an example of a switch branch, consider the module idealRelay.
module idealRelay (pout, nout, psense, nsense) ;
input psense, nsense ;
output pout, nout ;
electrical pout, nout, psense, nsense ;
parameter real thresh = 2.5 ;
analog begin

if (V(psense, nsense) > thresh)
V(pout, nout) <+ 0.0 ; // Becomes potential source

else
I(pout, nout) <+ 0.0 ; // Becomes flow source

end
endmodule

The simulator assumes that a discontinuity of order zero occurs whenever the branch
switches; so you do not have to use the discontinuity function with switch branches. For more
information about the discontinuity function, see “Announcing Discontinuity” on page 135.

Contributing a flow to a branch that already has a value retained for the potential results in
the potential being discarded and the branch being converted to a flow source. Conversely,
contributing a potential to a branch that already has a value retained for the flow results in the
flow being discarded and the branch being converted to a potential source. For example, in
the following code, each of the contribution statements is discarded when the next is
encountered.
analog begin

V(out) <+ 1.0; // Discarded
I(out) <+ 1.0; // Discarded
V(out) <+ 1.0;

end

In the next example,

Flow probe

Potential
source

Potential probe

Flow source

f

p

Cadence Verilog-A Language Reference
Analog Probes and Sources

October 2023 359 Product Version 23.1
© 1996-2023 All Rights Reserved.

I(out) <+ 1.0;
V(out) <+ I(out);

the result of V(out) is not 1.0. Instead, these two statements are equivalent to
// I(out) <+ 1.0;
V(out) <+ I(out);

because the flow contribution is discarded. The simulator reminds you of this behavior by
issuing a warning similar to the following,
The statement on line 12 contributes either a potential to a flow source or a flow
to a potential source. To match the requirements of value retention, the statement
is ignored.

Troubleshooting Loops of Rigid Branches

The following message might not actually indicate an error in your code.
Fatal error found by spectre during topology check.
The following branches form a loop of rigid branches (shorts)...:

Sometimes the simulator takes a too conservative approach to checking switch branches by
assuming, when it is not actually the case, that all switch branches are in the voltage source
mode at the same time. To disable this assumption, you can use the Cadence
no_rigid_switch_branch attribute. To avoid convergence difficulties, however, do not
use this attribute when you really do have multiple voltage sources in parallel or current
sources in series.

To illustrate how the no_rigid_switch_branch can be used, assume that you have the
following module.
// Verilog-A for sourceSwitch

‘include "constants.vams"
‘include "discipline.vams"

module sourceSwitch(vip1, vin1, vip2, vin2, vop1, von1);

input vip1, vin1, vip2, vin2;
output vop1, von1;
electrical vip1, vin1, vip2, vin2, vop1, von1;
parameter integer swState = 0;

// (* no_rigid_switch_branch *) analog
analog //this block causes a topology check error
begin

if (swState == 0)
begin

V(vop1, vip1) <+ 1.0;
V(von1, vin1) <+ 1.0;

end
else if (swState == 1)
begin

V(vop1, vip2) <+ 1.0;
V(von1, vin2) <+ 1.0;

end

	Contents
	Preface
	Related Documents
	Typographic and Syntax Conventions

	Modeling Concepts
	Verilog-A Language Overview
	Describing a System
	Analog Systems
	Nodes
	Conservative Systems
	Signal-Flow Systems
	Mixed Conservative and Signal-Flow Systems
	Simulator Flow

	Creating Modules
	Overview
	Declaring Modules
	Declaring the Module Interface
	Module Name
	Ports
	Parameters

	Defining Module Analog Behavior
	Defining Analog Behavior with Control Flow
	Using Integration and Differentiation with Analog Signals

	Using Internal Nodes in Modules
	Using Internal Nodes in Behavioral Definitions
	Using Internal Nodes in Higher Order Systems

	Instantiating Modules with Netlists
	Generate Constructs
	Conditional Generate Constructs
	Loop Generate Construct

	Lexical Conventions
	White Space
	Comments
	Identifiers
	Ordinary Identifiers
	Escaped Names
	Scope Rules

	Numbers
	Integer Numbers
	Real Numbers

	Data Types and Objects
	Output Variables
	Numbers
	Integer Numbers
	Real Numbers
	Converting Real Numbers to Integer Numbers

	Strings
	Parameters and Local Parameters
	Specifying a Parameter Type
	Specifying Permissible Values
	Specifying Parameter Arrays

	String Parameters
	Parameter Aliases
	Paramsets
	Paramset Output Variables

	Genvars
	Natures
	Declaring a Base Nature

	Disciplines
	Binding Natures with Potential and Flow
	Compatibility of Disciplines

	Net Disciplines
	Named Branches
	Implicit Branches
	Output Variables

	Statements for the Analog Block
	Analog Initial Block
	Analog Final Block
	Assignment Statements
	Procedural Assignment Statements in the Analog Block
	Branch Contribution Statement
	Indirect Branch Assignment Statement

	Sequential Block Statement
	Conditional Statement
	Case Statement
	Repeat Statement
	While Statement
	For Statement

	Operators for Analog Blocks
	Overview of Operators
	Unary Operators
	Unary Reduction Operators
	Increment and Decrement Operators

	Binary Operators
	Bitwise Operators

	Ternary Operator
	Operator Precedence
	Expression Short-Circuiting
	String Operators and Functions
	String Operator Details
	String Function Details

	Built-In Mathematical Functions
	Standard Mathematical Functions
	Trigonometric and Hyperbolic Functions
	Controlling How Math Domain Errors Are Handled

	Detecting and Using Analog Events
	Detecting and Using Events
	Initial_step Event
	Final_step Event
	Cross Event
	Above Event
	Timer Event

	Simulator Functions
	Announcing Discontinuity
	Bounding the Time Step
	Finding When a Signal Is Zero
	Querying the Simulation Environment
	Obtaining the Current Simulation Time
	Obtaining the Current Ambient Temperature
	Obtaining the Thermal Voltage
	Querying the Simulation Parameters
	Probing of values within a sibling instance during simulation

	Relating a Specific Frequency to a Source Name for RF
	Detecting Parameter Overrides
	Detecting Port Binding
	Obtaining and Setting Signal Values
	Out-Of-Module Reference

	Accessing Attributes
	Analysis-Dependent Functions
	Determining the Current Analysis Type
	Implementing Small-Signal AC Sources
	Implementing Small-Signal Noise Sources

	Generating Random Numbers
	$random
	$arandom

	Generating Random Numbers in Specified Distributions
	Uniform Distribution
	Normal (Gaussian) Distribution
	Exponential Distribution
	Poisson Distribution
	Chi-Square Distribution
	Student’s T Distribution
	Erlang Distribution

	Interpolating with Table Models
	Table Model File Format
	Example: Using the $table_model Function
	Example: Preparing Data in One-Dimensional Array Format

	Aliasing Local Nodes to Hierarchical Nodes
	Analog Operators
	Restrictions on Using Analog Operators
	Limited Exponential Function
	Time Derivative Operator
	Time Integral Operator
	Circular Integrator Operator
	Derivative Operator
	Delay Operator
	Transition Filter
	Slew Filter
	Implementing Laplace Transform S-Domain Filters
	Implementing Z-Transform Filters

	Displaying Results
	$strobe
	$display
	$write
	$debug
	$monitor

	Specifying Power Consumption
	Indicating Non-linearities to the Simulator
	Working with Files
	Opening a File
	Reading from a File
	Returning the Full Path of the File Being Read
	Writing to a File
	Finding the File Position
	Closing a File

	Writing to a Variable
	$swrite
	$sformat

	Simulator Control Functions
	$finish
	$cds_finish_current_analysis
	$stop
	$fatal
	$error
	$warning
	$info

	Changing the Global Circuit Temperature
	Generating Verilog-A Asserts
	Conversion Functions
	$rtoi()

	Obtaining the Trial Number for Monte Carlo Analysis
	$cds_get_mc_trial_number()

	User-Defined Functions
	Declaring an Analog User-Defined Function
	Returning a Value From an Analog User-Defined Function
	Calling a User-Defined Analog Function

	Calling Functions Implemented in C
	Import Declaration
	Loading C function from a Dynamic Link Library

	Supported/Unsupported Verilog-A Functions in SpectreRF

	Instantiating Modules and Primitives
	Instantiating Verilog-A Modules
	Creating and Naming Instances
	Mapping Instance Ports to Module Ports

	Connecting the Ports of Module Instances
	Port Connection Rules

	Overriding Parameter Values in Instances
	Overriding Parameter Values from the Module Instance Statement
	Overriding Parameter Values by Using Paramsets

	Instantiating Analog Primitives
	Instantiating Analog Primitives that Use Array Valued Parameters
	Instantiating Modules that Use Unsupported Parameter Types

	Using Inherited Ports
	Using an Inherited m Factor (Multiplicity Factor)
	Setting an m Factor Directly on a Verilog-A Module
	Using the $mfactor System Function
	$mfactor Double-Scaling
	Using $mfactor Together with the Standard m Factor
	Using $mfactor Together with an Inherited m Factor

	Controlling the Compiler
	Using Compiler Directives
	Implementing Text Macros
	`define Compiler Directive
	`undef Compiler Directive

	Compiling Code Conditionally
	`ifdef Compiler Directive
	`ifndef Compiler Directive

	Including Files at Compilation Time
	Setting Default Rise and Fall Times
	Resetting Directives to Default Values

	AHDL Linter Checks
	About the AHDL Linter Feature
	Using the AHDL Linter Feature
	Disabling Static Linter Checks for Specific Models
	Identifying AHDL Linter Messages
	Static AHDL Linter Message
	Dynamic AHDL Linter Message

	Filtering AHDL Linter Messages
	Using the ahdlhelp Utility

	Using Verilog-A in the Cadence Analog Design Environment
	Creating Cellviews Using the Cadence Analog Design Environment
	Preparing a Library
	Creating the Symbol View
	Using Blocks
	Creating a Verilog-A Cellview from a Symbol or Block
	Descend Edit
	Creating a Verilog-A Cellview
	Creating a Symbol Cellview from an Analog HDL Cellview

	Using Escaped Names in the Cadence Analog Design Environment
	Defining Quantities
	spectre/spectreVerilog Interface (Spectre Direct)

	Using Multiple Cellviews for Instances
	Creating Multiple Cellviews for a Component
	Modifying the Parameters Specified in Modules
	Switching the Cellview Bound with an Instance
	Example Illustrating Cellview Switching

	Multilevel Hierarchical Designs
	Including Verilog-A through Model Setup
	Netlisting Verilog-A Modules
	Hierarchical Verilog-A Modules
	Using a Hierarchy

	Using Models with Verilog-A
	Models in Modules

	Saving Verilog-A Variables
	Displaying the Waveforms of Variables

	Verilog-A Modeling Examples
	Electrical Modeling
	Three-Phase, Half-Wave Rectifier
	Thin-Film Transistor Model

	Mechanical Modeling
	Car on a Bumpy Road
	Gearbox

	Computing a Moving or Sliding-Window Average

	Nodal Analysis
	Kirchhoff’s Laws
	Simulating a System
	Transient Analysis
	Convergence

	Analog Probes and Sources
	Overview of Probes and Sources
	Probes
	Port Branches
	Sources
	Unassigned Sources
	Switch Branches

	Examples of Sources and Probes
	Linear Conductor
	Linear Resistor
	RLC Circuit
	Simple Implicit Diode

	Sample Model Library
	Analog Components
	Analog Multiplexer
	Current Deadband Amplifier
	Hard Current Clamp
	Hard Voltage Clamp
	Open Circuit Fault
	Operational Amplifier
	Constant Power Sink
	Short Circuit Fault
	Soft Current Clamp
	Soft Voltage Clamp
	Self-Tuning Resistor
	Untrimmed Capacitor
	Untrimmed Inductor
	Untrimmed Resistor
	Voltage Deadband Amplifier
	Voltage-Controlled Variable-Gain Amplifier

	Basic Components
	Resistor
	Capacitor
	Inductor
	Voltage-Controlled Voltage Source
	Current-Controlled Voltage Source
	Voltage-Controlled Current Source
	Current-Controlled Current Source
	Switch

	Control Components
	Error Calculation Block
	Lag Compensator
	Lead Compensator
	Lead-Lag Compensator
	Proportional Controller
	Proportional Derivative Controller
	Proportional Integral Controller
	Proportional Integral Derivative Controller

	Logic Components
	AND Gate
	NAND Gate
	OR Gate
	NOT Gate
	NOR Gate
	XOR Gate
	XNOR Gate
	D-Type Flip-Flop
	Clocked JK Flip-Flop
	JK-Type Flip-Flop
	Level Shifter
	RS-Type Flip-Flop
	Trigger-Type (Toggle-Type) Flip-Flop
	Half Adder
	Full Adder
	Half Subtractor
	Full Subtractor
	Parallel Register, 8-Bit
	Serial Register, 8-Bit

	Electromagnetic Components
	DC Motor
	Electromagnetic Relay
	Three-Phase Motor

	Functional Blocks
	Amplifier
	Comparator
	Controlled Integrator
	Deadband
	Deadband Differential Amplifier
	Differential Amplifier (Opamp)
	Differential Signal Driver
	Differentiator
	Flow-to-Value Converter
	Rectangular Hysteresis
	Integrator
	Level Shifter
	Limiting Differential Amplifier
	Logarithmic Amplifier
	Multiplexer
	Quantizer
	Repeater
	Saturating Integrator
	Swept Sinusoidal Source
	Three-Phase Source
	Value-to-Flow Converter
	Variable Frequency Sinusoidal Source
	Variable-Gain Differential Amplifier

	Magnetic Components
	Magnetic Core
	Magnetic Gap
	Magnetic Winding
	Two-Phase Transformer

	Mathematical Components
	Absolute Value
	Adder
	Adder, 4 Numbers
	Cube
	Cubic Root
	Divider
	Exponential Function
	Multiplier
	Natural Log Function
	Polynomial
	Power Function
	Reciprocal
	Signed Number
	Square
	Square Root
	Subtractor
	Subtractor, 4 Numbers

	Measure Components
	ADC, 8-Bit Differential Nonlinearity Measurement
	ADC, 8-Bit Integral Nonlinearity Measurement
	Ammeter (Current Meter)
	DAC, 8-Bit Differential Nonlinearity Measurement
	DAC, 8-Bit Integral Nonlinearity Measurement
	Delta Probe
	Find Event Probe
	Find Slope
	Frequency Meter
	Offset Measurement
	Power Meter
	Q (Charge) Meter
	Sampler
	Slew Rate Measurement
	Signal Statistics Probe
	Voltage Meter
	Z (Impedance) Meter

	Mechanical Systems
	Gearbox
	Mechanical Damper
	Mechanical Mass
	Mechanical Restrainer
	Road
	Mechanical Spring
	Wheel

	Mixed-Signal Components
	Analog-to-Digital Converter, 8-Bit
	Analog-to-Digital Converter, 8-Bit (Ideal)
	Decimator
	Digital-to-Analog Converter, 8-Bit
	Digital-to-Analog Converter, 8-Bit (Ideal)
	Sigma-Delta Converter (first-order)
	Sample-and-Hold Amplifier (Ideal)
	Single Shot
	Switched Capacitor Integrator

	Power Electronics Components
	Full Wave Rectifier, Two Phase
	Half Wave Rectifier, Two Phase
	Thyristor

	Semiconductor Components
	Diode
	MOS Transistor (Level 1)
	MOS Thin-Film Transistor
	N JFET Transistor
	NPN Bipolar Junction Transistor
	Schottky Diode

	Telecommunications Components
	AM Demodulator
	AM Modulator
	Attenuator
	Audio Source
	Bit Error Rate Calculator
	Charge Pump
	Code Generator, 2-Bit
	Code Generator, 4-Bit
	Decider
	Digital Phase Locked Loop (PLL)
	Digital Voltage-Controlled Oscillator
	FM Demodulator
	FM Modulator
	Frequency-Phase Detector
	Mixer
	Noise Source
	PCM Demodulator, 8-Bit
	PCM Modulator, 8-Bit
	Phase Detector
	Phase Locked Loop
	PM Demodulator
	PM Modulator
	QAM 16-ary Demodulator
	Quadrature Amplitude 16-ary Modulator
	QPSK Demodulator
	QPSK Modulator
	Random Bit Stream Generator
	Transmission Channel
	Voltage-Controlled Oscillator

	Understanding Error Messages
	Getting Ready to Simulate
	Creating a Verilog-A Module Description
	File Extension .va
	`include Compiler Directive
	__CDS_SPECTRE__ Macro

	Creating a Spectre Netlist File
	Including Files in a Netlist
	Naming Requirements for SPICE-Mode Netlisting

	Modifying Absolute Tolerances
	Modifying abstol in Standalone Mode
	Modifying abstol in the Cadence Analog Design Environment

	Using the Compiled C Code Flow
	Search Path and Order for Shared Libraries
	Creating and Specifying a Shared Library
	Compiling Verilog-A Models for Reuse
	Reusing Verilog-A Shared Libraries
	Sharing and Reusing Shared Libraries Automatically
	Compiling Verilog-A Models Using the Netlist-Based Method
	Compiling Verilog-A Models in an Isolated Directory
	Controlling the Optimization Level of Compiled C Code Flow
	Turning Off Parallel Compilation

	Using Verilog-A Compact Models to Increase Simulation Speed
	Noticing Differences When You Use the compact_module Attribute
	Specifying Instance and Model Parameters for a Verilog-A Compact Model
	Model Binning for Verilog-A Compact Models

	Ignoring the State of a Verilog-A Module for RF Simulation
	Ignoring the States of variables in a Verilog-A Module for RF Simulation
	CDS_AHDL_AUTOGMIN_INSERT Environment Variable
	CDS_AHDL_AUTOGDEV_SUPPORT Environment Variable

	Supported and Unsupported Language Elements
	Creating ViewInfo for Verilog-A Cellview
	ahdlUpdateViewInfo
	Description
	Arguments
	Example 1
	Example 2
	Example 3

	Converting SpectreHDL to Verilog-A
	SpectreHDL Constructs That Have Verilog-A Equivalents
	SpectreHDL Constructs That Have No Verilog-A Equivalent

	Verilog-A Source Protection
	Protecting the Source Description of Selected Modules or Regions
	Using the Protection Pragmas
	Using the decrypt_license and runtime_license Pragmas

	The ncprotect Command
	Protecting All Modules in a Source Description

	Verilog-A Compliance
	Making Your Models Compliant
	Analog Functions
	NULL Statements
	inf Used as a Number
	Changing Delay to Absdelay
	Changing $realtime to $abstime
	Changing bound_step to $bound_step
	Changing Array Specifications
	Chained Assignments Made Illegal
	Real Argument Not Supported as Direction Argument
	$limexp Changed to limexp
	`if `MACRO is Not Allowed
	discontinuity Changed to $discontinuity

	Noting Changes from OVI Verilog-AMS Version 2.0

	Glossary
	Index

