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The model for a current-controlled current source is
branch (ps,ns) in, (p,n) out;
I(out) <+ A * I(in);

Unassigned Sources

If you do not assign a value to a branch, the branch flow, by default, is set to zero. In the 
following fragment, for example, when closed is true, V(p,n) is set to zero. When closed 
is false, the current I(p,n) is set to zero. 
if (closed)

V(p,n) <+ 0 ;
else

I(p,n) <+ 0 ;

Alternatively, you could achieve the same result with
if (closed)

V(p,n) <+ 0 ;

This code fragment also sets V(p,n) to zero when closed is true. When closed is false, 
the current is set to zero by default.

Switch Branches

Switch branches are branches that change from source potential branches into source flow 
branches, and vice versa. Switch branches are useful when you want to model ideal switches 
or mechanical stops. 

To switch a branch to being a potential source, assign to its potential. To switch a branch to 
being a flow source, assign to its flow. The circuit model for a switch branch illustrates the 
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effect, with the position of the switch dependent upon whether you assign to the potential or 
to the flow of the branch.

As an example of a switch branch, consider the module idealRelay. 
module idealRelay (pout, nout, psense, nsense) ;
input psense, nsense ;
output pout, nout ;
electrical pout, nout, psense, nsense ;
parameter real thresh = 2.5 ;
analog begin

if (V(psense, nsense) > thresh)
V(pout, nout) <+ 0.0 ; // Becomes potential source

else
I(pout, nout) <+ 0.0 ; // Becomes flow source

end
endmodule

The simulator assumes that a discontinuity of order zero occurs whenever the branch 
switches; so you do not have to use the discontinuity function with switch branches. For more 
information about the discontinuity function, see “Announcing Discontinuity” on page 135.

Contributing a flow to a branch that already has a value retained for the potential results in 
the potential being discarded and the branch being converted to a flow source. Conversely, 
contributing a potential to a branch that already has a value retained for the flow results in the 
flow being discarded and the branch being converted to a potential source. For example, in 
the following code, each of the contribution statements is discarded when the next is 
encountered.
analog begin

V(out) <+ 1.0; // Discarded
I(out) <+ 1.0; // Discarded
V(out) <+ 1.0;

end

In the next example,
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I(out) <+ 1.0;
V(out) <+ I(out);

the result of V(out) is not 1.0. Instead, these two statements are equivalent to
// I(out) <+ 1.0;
V(out) <+ I(out);

because the flow contribution is discarded. The simulator reminds you of this behavior by 
issuing a warning similar to the following, 
The statement on line 12 contributes either a potential to a flow source or a flow 
to a potential source. To match the requirements of value retention, the statement 
is ignored.

Troubleshooting Loops of Rigid Branches

The following message might not actually indicate an error in your code. 
Fatal error found by spectre during topology check.
The following branches form a loop of rigid branches (shorts)...:

Sometimes the simulator takes a too conservative approach to checking switch branches by 
assuming, when it is not actually the case, that all switch branches are in the voltage source 
mode at the same time. To disable this assumption, you can use the Cadence 
no_rigid_switch_branch attribute. To avoid convergence difficulties, however, do not 
use this attribute when you really do have multiple voltage sources in parallel or current 
sources in series.

To illustrate how the no_rigid_switch_branch can be used, assume that you have the 
following module.
// Verilog-A for sourceSwitch

‘include "constants.vams"
‘include "discipline.vams"

module sourceSwitch(vip1, vin1, vip2, vin2, vop1, von1);

input vip1, vin1, vip2, vin2;
output vop1, von1;
electrical vip1, vin1, vip2, vin2, vop1, von1;
parameter integer swState = 0;

//      (* no_rigid_switch_branch *) analog
analog                  //this block causes a topology check error
begin

if ( swState == 0 )
begin

V(vop1, vip1) <+ 1.0;
V(von1, vin1) <+ 1.0;

end
else if (swState == 1 )
begin

V(vop1, vip2) <+ 1.0;
V(von1, vin2) <+ 1.0;

end
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