


Utility for Extracting and Highlighting Net Connectivity in Virtuoso





























Derek May




















Micron Technology, Inc.


972-521-5269


dmay@micron.com





























INTERNATIONAL CADENCE USERGROUP CONFERENCE


September 16-18, 2002


San Jose, California

















�
Introduction


This paper describes the extensive benefits of having a custom, skill-based, net extraction utility. VXL probing, Mark Net and LVS extraction routines provide limited, if not buggy, net highlighting features. Our net extraction routine allows the user to hierarchically extract existing layout for VXL, perform ICC-like net highlighting in Virtuoso, compare net lengths, find shorts, cross probe with the schematic, and so on. The user can highlight nets by their name or select them in the layout if the name is not known. Nets can be selected, highlighted in multiple colors or emboldened. Highlighting can be canceled in progress or the user can highlight by area in the case of large nets. This is all done in an interactive skill utility without any batch processing.


Background


It is very common for a designer to want to highlight or trace a net in layout. Unfortunately, this usually requires a connectivity-driven tool that is not always at your disposal. If you are a Virtuoso user, the only good ways to trace nets are: 1) use VXL probe in cells created by Virtuoso XL, 2) select nets within your routing tool, or 3) run LVS and probe the extracted results. In version 4.4.5, Cadence provided a new feature called Mark Net that traces nets based on layer connectivity information provided in the technology file. This feature is only marginally useful and still has some major bugs. Besides graphical highlighting, it is often beneficial to be able to trace a connection in Skill code to do some processing of shapes within a connection.


Why write another highlighter?�The designs we work on consist of a lot of full custom layout. Much of the work we do is done in the Virtuoso environment, especially on the larger blocks. We decided to write our own net highlighting tool after finishing the route of a large chip. The routed design was imported into Cadence and cut into sub pieces for multiple designers to clean up the routing and make some necessary manual edits. Since we were no longer in the routing environment, we could not use the highlighting of the router. We did not have a corresponding schematic for each of the new cut layout pieces, so we could not use VXL. The design was not LVS clean, so LVS extraction was not possible at the time. Cadence's Mark Net was a new feature at the time, but it didn't work in edit in place, nor did it highlight shapes under the cursor that were not in the current cell view. Cadence has since fixed Mark Net to work in edit in place, but it will only trace shapes at the current level or lower in the hierarchy. Other problems with Mark Net include the fact that it doesn’t handle mosaics correctly, the command cannot be canceled once tracing has begun, and nets only remain highlighted while the Mark Net command is active. This last problem makes it impossible to use if the Repeat Commands editor option is turned off.


A flexible, powerful highlighter


The net highlighting utility started out by simply highlighting shapes with net names at the top level of the design (because the design was routed in CCAR, the shapes had connectivity information). As edits were made and new shapes were added, it needed the ability to trace nets without connectivity information. As blocks were put together, it needed to be able to trace through hierarchies. This began to turn into a lot of work for basic net highlighting, but the designers were making a lot of use of the tool. Suggestions for adding connectivity information and calculating net lengths started to come in. We quickly realized that there was a lot to be gained from the net highlighting utility. By gathering the object ids of the shapes along a net, the user gains the ability to do many things that are not available in most highlighting tools.


As the ideas came in we decided it was time to invest some time into developing this tool right. It needed to be flexible enough to work on different designs with different layers and technology files. It needed to be able to handle any number of interconnect layers and yet still run efficiently. To simplify tracing from one layer to another, we decided to require the use of symbolic contacts and vias. These were already widely used on our designs but we still had many places where contacts were placed that did not contain the interconnect layers. This decision was important for the speed of the extraction. In our case, we are only interested in tracing from metal1 to poly through our contacts, and not down to active area. If the algorithm took the time to process every contact that interacts with metal1 it would severely slow down the extraction. Instead, if metal1 interacts with a symbolic contact containing metal1, it will then trace through the contact to the other interconnect layer. The utility reads all of the symbolic vias and contacts from the technology file. From each symbolic definition, it gathers the list of layers to extract and the name of the Via cell. The equivalentLayers subsection of the layerRules section of the technology file is used to identify other layers to be included in the tracing.


The next thing to consider was how the user would like to be able to use the tool. Our designers very often work in Virtuoso using Edit in Place to see their edits in the context of the full chip. This meant that the tool should work at the top level as well as in edit in place. It needed to be able to trace shapes below it in the hierarchy as well as shapes above it in the hierarchy. Working with very long nets and very many nets makes it difficult to always know net names or even see net names in the layout. It should be able to trace a net starting from a point entered by the user or by allowing the user to select a net name from a list. Some nets may be very long, or could even be shorted to other nets, possibly even a supply signal. The user needed to be able to cancel the command yet still see the portion of the net that was highlighted. This is great if the extraction is taking too long. Another feature added for efficiency is the ability to only trace a net in the visible area on the screen. Any shapes on the net that are not visible in the window will not be traced. Each of these features was critical and none of these worked in the Mark Net provided in Virtuoso.


We added three ways to highlight a net. First, we added the ability to select all shapes on a net. This gives us the ability to perform an action on the select net, such as copy or delete. Second, we used Cadence’s highlighting skill routines to highlight nets. This allows us to highlight shapes that are not available at the current level of hierarchy for selection. It also allows us to turn off layer or hierarchy visibility and more clearly see the topology of the highlighted net. However, when we turn off the visibility of the layers, it becomes difficult to decipher when layer changes are taking place and is the layer change from metal2 to metal1 or from metal2 to metal3. The third highlighting feature we added was an embolden feature. This feature looks at the colors used by each of the metal layers and creates a new layer packet using the same color, but a bolder version of the fill pattern and the line style. Then, as the line is traced, each segment is highlighted using the display packet with the same color but the bolder fill style. Not only does the net stand out more in the context of the other nets, but it also allows us to clearly see the layer changes when only highlighting is visible in the Virtuoso window.





�


Figure 1. A regular and a bold highlight


More than just a highlighter


To this point, the emphasis of this paper has been on the highlighting features. This is just the beginning. One of the first features we added was a net length calculator. One or more nets could be selected from the list of net names on the form. When the net length calculator runs, it reports the length of each layer on the net, the total net length and the number of vias on the net. It also reports the number of polygons encountered on the traced net. Sometimes it is difficult to accurately calculate the length of a polygon because it may be branching. The designer can optionally go back and change polygons into paths to more clearly define what they wish to measure. Also, turning off the hierarchy for extraction will allow the user to calculate interconnect length and ignore the internal interconnect of the cells to which it connects. By calculating the length of multiple nets at the same time, the user can use the utility to help balance net lengths and find out when they are within the right tolerance for the total net length or one layer at a time. The highlighting tool also has the ability to cycle through the highlighting colors so each net is highlighted in a different color.


With the ability to select a net, it was easy to add features for adding or removing connectivity information to the selected set. Now, with more shapes in the design having connectivity information from tools like VXL, routers or this net utility, it becomes easier to pinpoint shorts. When a shape with one name is being traced and it intersects with a shape that has a different net name, the intersection point is the location of the short. However, this is only as accurate at the connectivity information. If the user is not making edits in a connectivity-driven tool, it is very easy to move shapes from one net to another without updating the connectivity information. This can lead to reports of shorts that aren’t really shorts. This is where the ability to remove connectivity information from the selected set becomes handy.


Net extraction capability has allowed us to make better use of Virtuoso XL. Our design methodology calls for a lot of reuse of already existing layout. This makes it extremely difficult to introduce a bottom up tool like VXL into our methodology because our lower level cells have not been built for it. VXL works best when the lower level cells have been built or extracted in VXL before they are used in higher levels. The only way to do this with VXL is to open one cell at a time in the VXL interactive environment. There is no batch tool to help with this. This is prohibitive when there are hundreds of cells that need to be extracted or re-extracted. We took the net extraction routine from this utility and used it in a batch flow to extract the connectivity in an entire library of cells. The batch skill routine looped through all the cells in a library or all the cells in a hierarchy and added connectivity to every shape in the cell. A property was added to the cell to make VXL think it had extracted the cell.


At the end of our designs, our designers have the tedious task of adding probe pads to the custom areas of the layout. The probe pads are large and difficult to place in tight areas of the design. The difficulty of this task is twofold. First, finding a place to put a probe pad requires time and ingenuity on the layout designer’s part. Second, the probe pad needs to be named to make it useful for debugging later on. By highlighting the net, it is easier to identify the best location for a probe pad. Also, we’ve added two utilities to help with this second task. One is an interface for dropping probe pads that automatically determines the name of the net underneath and adds the name to the probe pad. The second is a utility to post-process a layout and add names to all the unnamed probe pads.


Another useful utility is one that will move pins to a more desirable location. Sometimes pins are put down in a less than optimum location, whether it is done manually or automatically with a placement tool. In the custom layout world, this happens a lot. Our Move Pin to Point utility allows a designer to click on a net and move (or copy) the pin on that net to the specified point. This makes it easy to move pins to the edge of a cell or to a more optimum place for routing.


Additional debugging features


This tool also has some other useful debugging features. Since our designs are very hierarchical in nature, we often see signal names change a lot through the hierarchy. This can sometimes be difficult to follow for a layout designer who doesn’t know the schematic as intimately as the schematic designer. The net utility will report the names of all the pins on the net in the hierarchy as well as the cell name and instance name from whence the pin comes. It can also report any special markers or properties that may have been placed on the net, pins or gates in the hierarchy.


Implementation issues


This net utility is written entirely in Skill code without any use of C or DIVA commands. The implementation, although straightforward in concept, was actually somewhat difficult because of limitations in some of the Cadence Skill functions. The process of tracing a net is accomplished by taking a starting shape and finding the shapes that it overlaps. The starting shape can be identified by a user-entered coordinate or by using a pin whose name the user specifies on a form. Overlapping shapes on the same layer are then traced to find their overlaps until all shapes have been found. When an overlapping shape is found to be in a symbolic via, the connecting layer in that via is also checked for overlaps.


The first difficulty is that Cadence’s dbGetTrueOverlaps command finds the overlaps of a rectangle. Our designs consist of shapes drawn as paths, polygons and rectangles, so this becomes more difficult. Converting paths to rectangles for this command is pretty easy (unless you allow 45° angles), but converting polygons to rectangles proves to be more difficult, especially if you have any non-90° angles in your polygons. It would have been much easier if Cadence provided a means to find overlaps of one shape over another, regardless of the shape.


The second biggest difficulty is handling Cadence mosaics. Cadence documentation for geGetInstTransform claims that it “Evaluates a path to an instance returned by dbGetTrueOverlaps and concatenates the overall offset, transform, and magnification of the instance placed within the design hierarchy.” However, if the data returned from dbGetTrueOverlaps contains a mosaic instance, geGetInstTransform will fail. This makes it extremely difficult to handle mosaics. We have written some work-arounds to handle mosaics, but our current net utilities program will still incorrectly trace through some abutting mosaics. 


Summary


All of the features described in this paper stem from a straightforward yet powerful algorithm that traces all of the shapes on a net and stores them in a structure. It is written entirely in Skill using a recursive algorithm and overlap functions. There are a number of different tools that allow a user to highlight nets, but the value of these tools does not compare to the value of having all of those Cadence database objects right at your fingertips. The feature list does not end here. We continue to find more uses for this tool all of the time.





