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Coverage of Checks and Expects

1 Introduction
shr_chkcov is a shareware that enables coverage collection of the e checks and expects in Specman 6.x. 
It is a new version of an existing package that worked on top of Specman 4.3.x, but, due to changes in 
the e infrastructure, was broken in Specman 5.x.

The shareware's capabilities provide a short-term solution, and a first step on the way to a complete 
assertion coverage solution that will be implemented once integration of the assertion coverage concept 
with our vPlanning approach is enhanced.

shr_chkcov allows you to collect and view coverage for each of the checks in the environment that use 
the built-in Specman checking constructs. This enables you to determine whether any of the checks have 
not been evaluated in the set of simulation runs that were used to create the currently loaded coverage 
database.

The user can specify that coverage is not to be collected or analyzed for all checks, or a subset of the 
checks, in the environment.

2 Coverage of checks and expects
There are two types of assertion checks in e:

1. Temporal checks defined with the expect construct define the correct behavior over multiple cycles. 
The temporal expression defined with the expect construct is always expected to succeed. Temporal 
checks are struct members and are continuously active during a run.

Example:

expect TE1=>TE2

defines a temporal rule that TE2 must succeed when evaluated starting one cycle after TE1.
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2. Data checks defined with the check that construct define the expected values at a particular point in 
time. Data checks are actions, and must be included in a method or a Time Consuming Method 
(TCM). They are activated only when the check that action is executed when the method is called.

Example:

check that 'data_out' == 'data_in';

Using the shr_chkcov shareware, a new cover group will be added under “session”, named “checks” 
(similar to the session.events cover group). This group will include all of the checks and expects in the 
design, each one of them represented as an item. Each item name is module-name__lineNumber (for 
example, test__line_20). Named expects will have their name used as the item name, in the following 
format: structName__checkName (for example, packet__my_expect). If a named check is defined in a 
when sub-type, the subtype name is used before the struct name (for example, 
GREEN_packet__my_expect).

Each item has only one bucket, named “TRUE”, indicating whether the check/expect was evaluated as 
described below, at least once, in one of the simulation runs in the coverage results database.

The semantics for the coverage is as follows:

• A check is covered if the check that action was executed.

• An expect is covered if the left hand side was evaluated to TRUE, and the '=>' was triggered. For 
example, the expect statement:
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expect TE1=>TE2 

will be considered as covered if TE1 was evaluated to TRUE.

The coverage is collected per-type only. The shr_chkcov shareware does not distinguish between 
different instances.

3 shr_chkcov Usage

3.1 Using shr_chkcov with Your Environment
To use the shr_chkcov shareware, you simply need to load/import the top file. It is important that the 
shareware is loaded before loading the user’s VE containing the checks/expects. You also can compile 
the shareware on top of Specman and then use this new executable when loading/compiling your 
environment.

For example:

load shr_chkcov/e/shr_chkcov_top.e
load my_env/sve/xyz_config_top.e

3.2 Connecting Checks and Expects Coverage to a vPlan
To include the coverage points of checks and expects in your vPlan, use the full path notation of the 
coverage database, according to the naming described above.

For example:

section top_env {
section module_a {

section checks_expects {
coverage: session.checks.packet__my_expect;
coverage: session.checks.test__line_14;
coverage: session.checks.GREEN_packet__my_expect;

}
}

}
perspective default {

top_section: top_env;
}
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3.3 Configuring Coverage Buckets
It is possible to configure (set on/off coverage) of a specific check or expect, using the set_cover() 
method. The method supports wildcards as well.

For example:

extend sys {
init() is also {

set_cover("session.checks.packet*",FALSE);
set_cover("session.checks.packet__my_expect",TRUE);
};

};

3.4 Limitations
Be aware of the following issues and limitations:

• Assertion coverage semantics is not tightly defined by its nature.

• This solution does not try to define the full semantics for assertion coverage (if such exists), but 
supplies only a minimal set of capabilities that were included in the previous shareware.
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• Coverage of checks and expects is collected per-type only.

• Minimal support level will be supplied for the utility.

• Minimal testing has been done for the utility.

• The proposed solution might not be compatible with future implementations of an enhanced solution.

• Coverage is collected before the execution of the check, and the check will be considered as covered 
even if the check fails (see below). If the user changed the severity of the check to IGNORE, coverage 
is not the right indication for the check if it was successful or not.

• An expect is covered if the left hand side was evaluated to TRUE, and the '=>' was triggered, and 
we don't check that the right hand side was evaluated to TRUE as well. So for TE1=>TE2, if the 
simulation ends after TE1 succeeds but before TE2 succeeds, our coverage will record this as covered.
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