• Skip to main content
  • Skip to search
  • Skip to footer
Cadence Home
  • This search text may be transcribed, used, stored, or accessed by our third-party service providers per our Cookie Policy and Privacy Policy.

  1. Community Forums
  2. RF Design
  3. HB and TRANSIENT shows different result regarding dc bl...

Stats

  • Locked Locked
  • Replies 6
  • Subscribers 63
  • Views 19034
  • Members are here 0
This discussion has been locked.
You can no longer post new replies to this discussion. If you have a question you can start a new discussion

HB and TRANSIENT shows different result regarding dc block

yefJ
yefJ over 6 years ago

Hello, i implemented a DC block of 100pf to remove the DC component on the LO_not net, as shown bellow.

When i checked with HB then it shows that the DC component was removed( the plots of before DC block net and after DC block net shown bellow)

but when i tested both nets on  Transient then i see that the LO_not net keeps oscilating  around the same DC.

the full log of the simulation was attached,where did i go wrong?

Thanks

Fullscreen 2500.log.txt Download
Cadence (R) Virtuoso (R) Spectre (R) Circuit Simulator
Version 15.1.0.801.isr17 64bit -- 19 Apr 2017
Copyright (C) 1989-2017 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, Virtuoso and Spectre are registered trademarks of Cadence Design Systems, Inc. All others are the property of their respective holders.

Includes RSA BSAFE(R) Cryptographic or Security Protocol Software from RSA Security, Inc.

User: yafimv   Host: micron.eng.tau.ac.il   HostID: 428454C2   PID: 13136
Memory  available: 16.7587 GB  physical: 33.6702 GB
Linux   : Red Hat Enterprise Linux Server release 6.9 (Santiago)
CPU Type: Intel(R) Xeon(R) CPU           E5420  @ 2.50GHz
        Socket: Processors [Frequency]
        0:       0 [1998.0],  2 [1998.0],  4 [2499.0],  6 [1998.0]
        1:       1 [1998.0],  3 [1998.0],  5 [1998.0],  7 [1998.0]
        
System load averages (1min, 5min, 15min) : 0.2 %, 0.8 %, 0.1 %


Simulating `input.scs' on micron.eng.tau.ac.il at 1:03:05 AM, Mon Feb 25, 2019 (process id: 13136).
Current working directory: /data.cc/data/a/home/cc/students/enginer/yafimv/simulation/ex5_mixerr_3_33_interfer23/spectre/schematic/netlist
Command line:
    /eda_disk/cadence/tools/MMSIM/151/tools/bin/spectre -64 input.scs  \
        +escchars +log ../psf/spectre.out +inter=mpsc  \
        +mpssession=spectre0_3361_6 -format psfxl -raw ../psf  \
        +lqtimeout 900 -maxw 5 -maxn 5
spectre pid = 13136

Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libinfineon_sh.so ...
Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libphilips_o_sh.so ...
Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libphilips_sh.so ...
Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libsparam_sh.so ...
Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libstmodels_sh.so ...
Reading file:  /data.cc/data/a/home/cc/students/enginer/yafimv/simulation/ex5_mixerr_3_33_interfer23/spectre/schematic/netlist/input.scs
Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/configs/spectre.cfg
Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/configs/mapsubckt.cfg
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_NVT_V021.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_NVT_V021.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_V111.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_V111.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP25_V113.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP25_V113.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_25_rf_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_25_rf_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_33IO_GOX52_VT21.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_33IO_GOX52_VT21.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_RF_V021.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_RF_V021.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90-resistor-control-V041.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_res.va
Reading link:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/constants.h
Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/constants.vams
Reading link:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/discipline.h
Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/disciplines.vams
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_ppo_V031.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_ppo_V031.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_npo_V031.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_npo_V031.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rnhr_V031.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rnhr_V031.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rsnwell_V031.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rsnwell_V031.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_nd_V031.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_nd_V031.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_pd_V031.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_pd_V031.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_metal_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_metal_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_BJT_V111.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_BJT_V111.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_DIODE_V101.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_RF_V021.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_RF_V021.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_RF_VTAB.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_RF_VTAB.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_V102.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_V102.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLHVT12_V101.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLHVT12_V101.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_V102.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_V102.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLNVT12_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLNVT12_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90SP_NCAP10_V112.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90SP_NCAP10_V112.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP12_LL_V102.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP12_LL_V102.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_V061.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_V061.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPHVT10_V111.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPHVT10_V111.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPLVT10_V102.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPLVT10_V102.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPNVT10_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPNVT10_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_mimcaps_20f_kf_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_mimcaps_20f_kf_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_momcaps_V041.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_momcaps_V041.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_vardiop_rf_v011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_vardiop_rf_v011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_12_llrf_V021.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_12_llrf_V021.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp3_rfvcl_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp3_rfvcl_V011.typ.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp4_rfvcl_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp4_rfvcl_V011.typ.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnhr_rf_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnhr_rf_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/res_poly.va
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnnpo_rf_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnnpo_rf_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnppo_rf_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnppo_rf_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_10_sprf_V011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_10_sprf_V011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/bond_pad_v011.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/bond_pad_v011.mdl.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_RF_V021.lib.scs
Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_RF_V021.mdl.scs
Time for NDB Parsing: CPU = 208.968 ms, elapsed = 372.757 ms.
Time accumulated: CPU = 241.962 ms, elapsed = 372.768 ms.
Peak resident memory used = 45.4 Mbytes.


The CPU load for active processors is :
        Spectre  0 (52.6 %)      1 (5.4 %)       2 (7.9 %)       3 (2.6 %)
                 4 (33.3 %)      5 (5.6 %)       6 (10.5 %)      7 (5.6 %)
        Other   

Warning from spectre during circuit read-in.
    WARNING (SFE-2654): VerilogA module `respoly_va' override primitive/(verilogA module) `respoly_va'.
    WARNING (SFE-2654): VerilogA module `respoly_va' override primitive/(verilogA module) `respoly_va'.
Warning from spectre during hierarchy flattening.
    WARNING (SFE-1131): Duplicate scope option `tnom' with scope `TopCircuit'. (using last value specified).

Time for Elaboration: CPU = 55.992 ms, elapsed = 57.405 ms.
Time accumulated: CPU = 297.954 ms, elapsed = 430.419 ms.
Peak resident memory used = 53.6 Mbytes.

Time for EDB Visiting: CPU = 1 ms, elapsed = 1.77312 ms.
Time accumulated: CPU = 299.954 ms, elapsed = 432.579 ms.
Peak resident memory used = 54.3 Mbytes.


Notice from spectre during topology check.
    Only one connection to the following 2 nodes:
        LO
        LO_not
    No DC path from node `LO' to ground, Gmin installed to provide path.
    No DC path from node `LO_not' to ground, Gmin installed to provide path.


Global user options:
             reltol = 0.001
            vabstol = 1e-06
            iabstol = 1e-12
               temp = 27
               gmin = 1e-12
             rforce = 1
           maxnotes = 5
           maxwarns = 5
             digits = 5
               cols = 80
             pivrel = 0.001
           sensfile = ../psf/sens.output
     checklimitdest = psf
               save = allpub
               tnom = 25
               tnom = 27
             scalem = 1
              scale = 1

Scoped user options:

Circuit inventory:
              nodes 26
              bsim4 6     
          capacitor 38    
              diode 2     
           inductor 6     
           resistor 17    
            vsource 4     

Analysis and control statement inventory:
                 hb 1     
               info 6     

Output statements:
             .probe 0     
           .measure 0     
               save 0     

Time for parsing: CPU = 3.999 ms, elapsed = 4.76098 ms.
Time accumulated: CPU = 303.953 ms, elapsed = 437.536 ms.
Peak resident memory used = 55.8 Mbytes.

~~~~~~~~~~~~~~~~~~~~~~
Pre-Simulation Summary
~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~
Entering remote command mode using MPSC service (spectre, ipi, v0.0, spectre0_3361_6, ).

Warning from spectre.
    WARNING (SPECTRE-16707): Only tran supports psfxl format, result of other analyses will be in psfbin format.
Warning from spectre.
    WARNING (SPCRTRF-15267): The number of sources 0 is less than the number of funds 1 set in analysis.Please make sure the analysis is set up correctly.

Fundamental 0 in fundfreqs:  period = 303.03 ps, freq = 3.3 GHz, harms = 5, oversample = 1.
Fundamental 1 in fundfreqs:  period = 151.515 ps, freq = 6.6 GHz, harms = 5, oversample = 1.

****************************************************************
Harmonic Balance Steady State Analysis `hb': largefund = 3.3 GHz
****************************************************************
Use semi-autonomous solver
Warning:  Commensurate tone frequencies are detected. Although simulation result won't be affected, you might want to use incommensurate frequencies for convenience
Trying `homotopy = gmin'.
DC simulation time: CPU = 11.999 ms, elapsed = 12.1269 ms.

Output and IC/nodeset summary:
                 ic     1       


Using linear IC

Warning from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    WARNING (CMI-2682): M0: The bulk-drain junction forward bias voltage (4.83857 V) exceeds `VjdmFwd' = 951.351 mV.  The results are now incorrect because the junction current model has been linearized
    WARNING (CMI-2682): M2: The bulk-drain junction forward bias voltage (4.72324 V) exceeds `VjdmFwd' = 951.351 mV.  The results are now incorrect because the junction current model has been linearized
    WARNING (CMI-2377): M2: Vgd has exceeded the oxide breakdown voltage of `vbox' = 8.85 V.
Notice from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    M2: Device leaves the gate-drain oxide breakdown region.
Warning from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    WARNING (CMI-2682): M0: The bulk-source junction forward bias voltage (1.12284 V) exceeds `VjsmFwd' = 932.242 mV.  The results are now incorrect because the junction current model has been linearized
    WARNING (CMI-2682): M2: The bulk-source junction forward bias voltage (1.11078 V) exceeds `VjsmFwd' = 932.242 mV.  The results are now incorrect because the junction current model has been linearized
Notice from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    M0: The bulk-drain junction returns to normal bias condition
    M2: The bulk-drain junction returns to normal bias condition
Warning from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    WARNING (CMI-2375): M_ver_n: Vgs has exceeded the oxide breakdown voltage of `vbox' = 8.85 V.
    WARNING (CMI-2377): M_ver_n: Vgd has exceeded the oxide breakdown voltage of `vbox' = 8.85 V.
    WARNING (CMI-2375): M_ver_p: Vgs has exceeded the oxide breakdown voltage of `vbox' = 8.85 V.
    WARNING (CMI-2377): M_ver_p: Vgd has exceeded the oxide breakdown voltage of `vbox' = 8.85 V.
Notice from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    M0: The bulk-source junction returns to normal bias condition
Warning from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    WARNING (CMI-2377): M0: Vgd has exceeded the oxide breakdown voltage of `vbox' = 8.85 V.
Notice from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    M2: The bulk-source junction returns to normal bias condition
Warning from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    WARNING (CMI-2377): M2: Vgd has exceeded the oxide breakdown voltage of `vbox' = 8.85 V.
        Further occurrences of this warning will be suppressed.
Notice from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    M_ver_n: Device leaves the gate-source oxide breakdown region.
    M_ver_n: Device leaves the gate-drain oxide breakdown region.
    M_ver_p: Device leaves the gate-source oxide breakdown region.
    M_ver_p: Device leaves the gate-drain oxide breakdown region.
    M0: Device leaves the gate-drain oxide breakdown region.
    M2: Device leaves the gate-drain oxide breakdown region.
        Further occurrences of this notice will be suppressed.
Warning from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    WARNING (CMI-2682): M0: The bulk-drain junction forward bias voltage (2.10131 V) exceeds `VjdmFwd' = 951.351 mV.  The results are now incorrect because the junction current model has been linearized
        Further occurrences of this warning will be suppressed.
Notice from spectre at time = 1.51515 ps during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
    M0: The bulk-drain junction returns to normal bias condition
        Further occurrences of this notice will be suppressed.

Linear IC: estimated frequency is 2.86703e+09 Hz

================================
`hb': time = (0 s -> 15.1515 ns)
================================

Output and IC/nodeset summary:
                 ic     1       

Important parameter values in tstab integration:
    start = 0 s
    outputstart = 0 s
    stop = 15.1515 ns
    step = 15.1515 ps
    maxstep = 1.51515 ps
    ic = all
    useprevic = no
    skipdc = no
    reltol = 1e-03
    abstol(V) = 1 uV
    abstol(I) = 1 pA
    temp = 27 C
    tnom = 27 C
    tempeffects = all
    method = traponly
    lteratio = 10
    relref = sigglobal
    cmin = 0 F
    gmin = 1 pS

    hb: time = 379.7 ps    (2.51 %), step = 1.515 ps      (10 m%)
    hb: time = 1.137 ns    (7.51 %), step = 1.515 ps      (10 m%)
    hb: time = 1.895 ns    (12.5 %), step = 1.515 ps      (10 m%)
    hb: time = 2.652 ns    (17.5 %), step = 1.515 ps      (10 m%)
    hb: time = 3.41 ns     (22.5 %), step = 1.515 ps      (10 m%)
    hb: time = 4.168 ns    (27.5 %), step = 1.515 ps      (10 m%)
    hb: time = 4.925 ns    (32.5 %), step = 1.515 ps      (10 m%)
    hb: time = 5.683 ns    (37.5 %), step = 1.515 ps      (10 m%)
99% of the nodes have reached steady-state after 6.06154 ns.
    hb: time = 6.44 ns     (42.5 %), step = 1.212 ps       (8 m%)
    hb: time = 7.197 ns    (47.5 %), step = 1.212 ps       (8 m%)
The Estimated oscillating frequency from Tstab Tran is = 3.2597 GHz . 

=======================================
`hb': time = (7.27366 ns -> 7.58044 ns)
=======================================

Output and IC/nodeset summary:
                 ic     1       

    hb: time = 7.282 ns    (2.84 %), step = 1.515 ps     (494 m%)
    hb: time = 7.298 ns    (7.78 %), step = 1.515 ps     (494 m%)
    hb: time = 7.313 ns    (12.7 %), step = 1.515 ps     (494 m%)
    hb: time = 7.328 ns    (17.7 %), step = 1.515 ps     (494 m%)
    hb: time = 7.343 ns    (22.6 %), step = 1.515 ps     (494 m%)
    hb: time = 7.358 ns    (27.5 %), step = 1.515 ps     (494 m%)
    hb: time = 7.375 ns      (33 %), step = 1.515 ps     (494 m%)
    hb: time = 7.39 ns     (37.9 %), step = 1.515 ps     (494 m%)
    hb: time = 7.405 ns    (42.8 %), step = 1.515 ps     (494 m%)
    hb: time = 7.42 ns     (47.8 %), step = 1.515 ps     (494 m%)
    hb: time = 7.435 ns    (52.7 %), step = 1.515 ps     (494 m%)
    hb: time = 7.451 ns    (57.7 %), step = 1.515 ps     (494 m%)
    hb: time = 7.466 ns    (62.6 %), step = 1.515 ps     (494 m%)
    hb: time = 7.481 ns    (67.5 %), step = 1.515 ps     (494 m%)
    hb: time = 7.498 ns      (73 %), step = 1.515 ps     (494 m%)
    hb: time = 7.513 ns    (77.9 %), step = 1.515 ps     (494 m%)
    hb: time = 7.528 ns    (82.9 %), step = 1.515 ps     (494 m%)
    hb: time = 7.543 ns    (87.8 %), step = 1.515 ps     (494 m%)
    hb: time = 7.558 ns    (92.7 %), step = 1.515 ps     (494 m%)
    hb: time = 7.573 ns    (97.7 %), step = 1.515 ps     (494 m%)

Notice from spectre during Harmonic Balance Steady State Analysis `hb'.
    Auto harmonic calculation has chosen 5 harmonics for tone-1.

Warning:  Commensurate tone frequencies are detected. Although simulation result won't be affected, you might want to use incommensurate frequencies for convenience
Pin node is 56, amplitude is 0.212674
Pinning node: 56, harm: 1, name: M4:int_d, value: (-0.194879, -0.085161)

==============================
     Harmonic balance
  hbhomotopy=tone (1-tone)
==============================
Important HB parameters:
    RelTol=1.00e-05
    abstol(I)=1.00e-12 A
    abstol(V)=1.00e-06 V
    residualtol=1.00e+00
    lteratio=1.00e+01
    steadyratio=1.00e+00
    maxperiods=100


********** initial residual **********
Resd Norm=2.64e+03  at node M4:int_g  harm=(5 0)

********** iter = 1 **********
Delta Norm=4.48e+01  at node LO  harm=(0 0)
Resd Norm=1.18e+03  at node M4:int_g  harm=(4 0)
Frequency= 3.2597e+09 Hz, delta f= 0.00e+00

********** iter = 2 **********
Delta Norm=6.64e+00  at node V3:p  harm=(4 0)
Resd Norm=7.07e+02  at node M4:int_g  harm=(4 0)
Frequency= 3.2597e+09 Hz, delta f= -2.63e+04

********** iter = 3 **********
Delta Norm=6.06e+00  at node V3:p  harm=(4 0)
Resd Norm=3.09e+02  at node M3:int_g  harm=(5 0)
Frequency= 3.2597e+09 Hz, delta f= -1.01e+04

********** iter = 4 **********
Delta Norm=2.99e+00  at node V2:p  harm=(2 0)
Resd Norm=1.88e+02  at node M3:int_g  harm=(4 0)
Frequency= 3.2597e+09 Hz, delta f= 8.17e+04

********** iter = 5 **********
Delta Norm=2.08e+00  at node V3:p  harm=(2 0)
Resd Norm=1.33e+02  at node M3:int_g  harm=(4 0)
Frequency= 3.2600e+09 Hz, delta f= 2.30e+05

********** iter = 6 **********
Delta Norm=3.40e+00  at node V2:p  harm=(2 0)
Resd Norm=8.16e+00  at node M3:int_g  harm=(4 0)
Frequency= 3.2599e+09 Hz, delta f= -1.20e+05

********** iter = 7 **********
Delta Norm=1.63e-01  at node V3:p  harm=(4 0)
Resd Norm=5.00e-01  at node M3:int_g  harm=(2 0)
Frequency= 3.2599e+09 Hz, delta f= 2.19e+03
Pinning node: 56, harm: 1, name: M4:int_d, value: (-0.194942, -0.085161)

==============================
     Harmonic balance
  hbhomotopy=tone (all-tone)
==============================
Important HB parameters:
    RelTol=1.00e-05
    abstol(I)=1.00e-12 A
    abstol(V)=1.00e-06 V
    residualtol=1.00e+00
    lteratio=1.00e+01
    steadyratio=1.00e+00
    maxperiods=100


********** initial residual **********
Resd Norm=5.00e-01  at node M3:int_g  harm=(2 0)

********** iter = 1 **********
Delta Norm=7.91e-03  at node V3:p  harm=(4 0)
Resd Norm=3.61e-01  at node M3:int_g  harm=(2 0)
Frequency= 3.2599e+09 Hz, delta f= -1.52e+01


*************************************************
Fundamental frequency is 3.25985 GHz.
*************************************************

CPU time=0 s


Opening the PSF file ../psf/hb.fd.qpss_hb ...

Opening the PSF file ../psf/hb.fi.qpss_hb ...
Total time required for hb analysis `hb': CPU = 979.851 ms, elapsed = 993.78 ms.
Time accumulated: CPU = 1.2858 s, elapsed = 1.98361 s.
Peak resident memory used = 63.2 Mbytes.


Notice from spectre.
    43 notices suppressed.
    43 warnings suppressed.

modelParameter: writing model parameter values to rawfile.

Opening the PSF file ../psf/modelParameter.info ...
element: writing instance parameter values to rawfile.

Opening the PSF file ../psf/element.info ...
outputParameter: writing output parameter values to rawfile.

Opening the PSF file ../psf/outputParameter.info ...
designParamVals: writing netlist parameters to rawfile.

Opening the PSFASCII file ../psf/designParamVals.info ...
primitives: writing primitives to rawfile.

Opening the PSFASCII file ../psf/primitives.info.primitives ...
subckts: writing subcircuits to rawfile.

Opening the PSFASCII file ../psf/subckts.info.subckts ...

  • Cancel
Parents
  • ShawnLogan
    ShawnLogan over 6 years ago

    Dear yefj,

    yefJ said:

    When i checked with HB then it shows that the DC component was removed( the plots of before DC block net and after DC block net shown bellow)

    but when i tested both nets on  Transient then i see that the LO_not net keeps oscilating  around the same DC.

    I believe the problem is with your understanding of the two analyses. In the transient analysis, the DC operating point is initially computed and used as the initial condition for the numerical integration. There is no DC connection to any DC potential to the output node you show as "LO_not". Hence, the initial DC voltage will be the same as the DC voltage on the net "out_p" on the opposite side of the AC coupling capacitor. Hence, in your transient analysis simulation result, the DC node voltage of node "LO_not" is about the same as the node voltage of node "out_p". If there is any finite impedance to ground at node "LO_not", the DC voltage at that node will decay to ground. Without any significantly low DC impedance connected to ground (or any potential) from node "LO_not", the time constant for it to decay to ground (or whatever potential the impedance is connected) will be extremely large. With only 26 ns shown in your transient analysis and no DC impedance connected to node "LO_not", the decay time constant is too large to see any noticeable change in the DC voltage of "LO_not".

    In a harmonic balance analysis, the steady-state solution is estimated. As such, all transients associated with displacement currents, are removed as part of the harmonic balance algorithm. Therefore, the DC voltage present at the beginning of your transient simulation at node "LO_not" is removed.

    Shawn

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel
Reply
  • ShawnLogan
    ShawnLogan over 6 years ago

    Dear yefj,

    yefJ said:

    When i checked with HB then it shows that the DC component was removed( the plots of before DC block net and after DC block net shown bellow)

    but when i tested both nets on  Transient then i see that the LO_not net keeps oscilating  around the same DC.

    I believe the problem is with your understanding of the two analyses. In the transient analysis, the DC operating point is initially computed and used as the initial condition for the numerical integration. There is no DC connection to any DC potential to the output node you show as "LO_not". Hence, the initial DC voltage will be the same as the DC voltage on the net "out_p" on the opposite side of the AC coupling capacitor. Hence, in your transient analysis simulation result, the DC node voltage of node "LO_not" is about the same as the node voltage of node "out_p". If there is any finite impedance to ground at node "LO_not", the DC voltage at that node will decay to ground. Without any significantly low DC impedance connected to ground (or any potential) from node "LO_not", the time constant for it to decay to ground (or whatever potential the impedance is connected) will be extremely large. With only 26 ns shown in your transient analysis and no DC impedance connected to node "LO_not", the decay time constant is too large to see any noticeable change in the DC voltage of "LO_not".

    In a harmonic balance analysis, the steady-state solution is estimated. As such, all transients associated with displacement currents, are removed as part of the harmonic balance algorithm. Therefore, the DC voltage present at the beginning of your transient simulation at node "LO_not" is removed.

    Shawn

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel
Children
  • yefJ
    yefJ over 6 years ago in reply to ShawnLogan

    Hello Shawn , so you are saying that in the HB the DC component removed by default , with or without the DC block ?

    Thanks

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel
  • Andrew Beckett
    Andrew Beckett over 6 years ago in reply to yefJ

    Shawn is correct. What you have here will be a time constant caused by the (almost) open-circuit capacitance and an impedance added via gmin - to ensure there is a path to ground. The gmin conductance is 1e-12 Siemens, so that means your time constant here would be 100 seconds. So it would take a very long time for the DC level in the transient to settle.

    I threw together a very simple netlist example to illustrate this (put in a file, longtc.scs and then run "spectre longtc.scs" and open the longtc.raw results in ViVA to plot). I thought the netlist was easier to see all the parameters than a schematic and ADE screenshot, since it's so simple:

    // example of slow time constant effect for discrepancy between
    // HB and Transient

    VLO (LO 0) vsource type=sine ampl=0.2 freq=3.3G dc=1.2
    Vramp (ramp 0) vsource type=pulse rise=100p val0=0 val1=1 edgetype=halfsine
    mult (LOout 0 LO 0 ramp 0) pvcvs coeffs=[0 0 0 0 1]
    dcblock (LOout LO_not) capacitor c=100p
    //rload (LO_not 0) resistor r=1k

    //sillyopts options gmin=1e-3
    tran tran stop=10n
    hb hb fundfreqs=[3.3G] maxharms=[7]

    You'll see a similar behaviour. The harmonic balance is finding the final settled steady state behaviour, but in the above example the capacitor would start off with 0V across it because the DC operating point is found by removing all the capacitors (and shorting inductors) with the time-zero values and that would set the initial voltage across the capacitor. You can see the effect of the gmin by uncommenting the //sillyopts line (just remove the double slash) - setting gmin to 1kOhms here (1e-3 Siemens) would lead to an observable drift in the DC level in the short transient run. Of course, setting gmin to 1e-3 is a silly thing to do - but it explains that your lack of load is causing the problem here with the transient results. Because  HB's goal is to find the final, settled steady state periodic behaviour, it correctly finds the real DC level.

    Regards,

    Andrew.

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel
  • yefJ
    yefJ over 6 years ago in reply to Andrew Beckett

    Hello Andrew, when i connected the LO_NOT and LO to a mixer component, and ran both simulation i still got the same result, although now its not a floating net.

    Transient simulation ran 1000 times longer then before and the DC is not showing any sign of decaying.

    Another thing is that my HB saying that its almost converges and that i should increase the number of iterations,but in the option button the number of iterations is not defined.

    where do i define the number of iterations?

    (the full log is attached  in the end)

    Thanks

    Fullscreen 3441.log.txt Download
    Cadence (R) Virtuoso (R) Spectre (R) Circuit Simulator
    Version 15.1.0.801.isr17 64bit -- 19 Apr 2017
    Copyright (C) 1989-2017 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, Virtuoso and Spectre are registered trademarks of Cadence Design Systems, Inc. All others are the property of their respective holders.
    
    Includes RSA BSAFE(R) Cryptographic or Security Protocol Software from RSA Security, Inc.
    
    User: yafimv   Host: micron.eng.tau.ac.il   HostID: 428454C2   PID: 28020
    Memory  available: 16.2295 GB  physical: 33.6702 GB
    Linux   : Red Hat Enterprise Linux Server release 6.9 (Santiago)
    CPU Type: Intel(R) Xeon(R) CPU           E5420  @ 2.50GHz
            Socket: Processors [Frequency]
            0:       0 [1998.0],  2 [1998.0],  4 [1998.0],  6 [1998.0]
            1:       1 [2499.0],  3 [1998.0],  5 [1998.0],  7 [1998.0]
            
    System load averages (1min, 5min, 15min) : 2.8 %, 7.0 %, 5.1 %
    
    
    Simulating `input.scs' on micron.eng.tau.ac.il at 1:26:56 PM, Mon Feb 25, 2019 (process id: 28020).
    Current working directory: /data.cc/data/a/home/cc/students/enginer/yafimv/simulation/ex5_mixerr_3_33_interfer2/spectre/schematic/netlist
    Command line:
        /eda_disk/cadence/tools/MMSIM/151/tools/bin/spectre -64 input.scs  \
            +escchars +log ../psf/spectre.out +inter=mpsc  \
            +mpssession=spectre0_13383_7 -format psfxl -raw ../psf  \
            +lqtimeout 900 -maxw 5 -maxn 5
    spectre pid = 28020
    
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libinfineon_sh.so ...
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libphilips_o_sh.so ...
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libphilips_sh.so ...
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libsparam_sh.so ...
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libstmodels_sh.so ...
    Reading file:  /data.cc/data/a/home/cc/students/enginer/yafimv/simulation/ex5_mixerr_3_33_interfer2/spectre/schematic/netlist/input.scs
    Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/configs/spectre.cfg
    Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/configs/mapsubckt.cfg
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_NVT_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_NVT_V021.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_V111.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_V111.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP25_V113.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP25_V113.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_25_rf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_25_rf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_33IO_GOX52_VT21.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_33IO_GOX52_VT21.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_RF_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_RF_V021.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90-resistor-control-V041.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_res.va
    Reading link:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/constants.h
    Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/constants.vams
    Reading link:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/discipline.h
    Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/disciplines.vams
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_ppo_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_ppo_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_npo_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_npo_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rnhr_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rnhr_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rsnwell_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rsnwell_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_nd_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_nd_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_pd_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_pd_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_metal_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_metal_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_BJT_V111.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_BJT_V111.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_DIODE_V101.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_RF_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_RF_V021.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_RF_VTAB.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_RF_VTAB.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_V102.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_V102.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLHVT12_V101.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLHVT12_V101.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_V102.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_V102.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLNVT12_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLNVT12_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90SP_NCAP10_V112.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90SP_NCAP10_V112.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP12_LL_V102.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP12_LL_V102.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_V061.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_V061.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPHVT10_V111.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPHVT10_V111.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPLVT10_V102.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPLVT10_V102.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPNVT10_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPNVT10_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_mimcaps_20f_kf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_mimcaps_20f_kf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_momcaps_V041.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_momcaps_V041.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_vardiop_rf_v011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_vardiop_rf_v011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_12_llrf_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_12_llrf_V021.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp3_rfvcl_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp3_rfvcl_V011.typ.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp4_rfvcl_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp4_rfvcl_V011.typ.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnhr_rf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnhr_rf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/res_poly.va
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnnpo_rf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnnpo_rf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnppo_rf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnppo_rf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_10_sprf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_10_sprf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/bond_pad_v011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/bond_pad_v011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_RF_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_RF_V021.mdl.scs
    Time for NDB Parsing: CPU = 206.968 ms, elapsed = 376.835 ms.
    Time accumulated: CPU = 241.962 ms, elapsed = 376.845 ms.
    Peak resident memory used = 45.5 Mbytes.
    
    
    The CPU load for active processors is :
            Spectre  0 (59.0 %)      1 (30.6 %)      3 (2.8 %)       4 (21.1 %)
                     5 (2.6 %)       6 (8.1 %)       7 (10.5 %)     
            Other   
    
    Warning from spectre during circuit read-in.
        WARNING (SFE-2654): VerilogA module `respoly_va' override primitive/(verilogA module) `respoly_va'.
        WARNING (SFE-2654): VerilogA module `respoly_va' override primitive/(verilogA module) `respoly_va'.
    Warning from spectre during hierarchy flattening.
        WARNING (SFE-1131): Duplicate scope option `tnom' with scope `TopCircuit'. (using last value specified).
    
    Time for Elaboration: CPU = 78.988 ms, elapsed = 80.6909 ms.
    Time accumulated: CPU = 320.95 ms, elapsed = 457.818 ms.
    Peak resident memory used = 54 Mbytes.
    
    Time for EDB Visiting: CPU = 3 ms, elapsed = 3.02386 ms.
    Time accumulated: CPU = 323.95 ms, elapsed = 461.189 ms.
    Peak resident memory used = 54.8 Mbytes.
    
    
    Notice from spectre during topology check.
        No DC path from node `I20.M7:int_g' to ground, Gmin installed to provide path.
        No DC path from node `I20.M5:int_g' to ground, Gmin installed to provide path.
        No DC path from node `RF' to ground, Gmin installed to provide path.
        No DC path from node `M0:int_g' to ground, Gmin installed to provide path.
    
    
    Global user options:
                 reltol = 0.001
                vabstol = 1e-06
                iabstol = 1e-12
                   temp = 27
                   gmin = 1e-12
                 rforce = 1
               maxnotes = 5
               maxwarns = 5
                 digits = 5
                   cols = 80
                 pivrel = 0.001
               sensfile = ../psf/sens.output
         checklimitdest = psf
                   save = allpub
                   tnom = 25
                   tnom = 27
                 scalem = 1
                  scale = 1
    
    Scoped user options:
    
    Circuit inventory:
                  nodes 56
                  bsim4 14    
              capacitor 85    
                  diode 4     
               inductor 14    
               resistor 35    
                vsource 8     
    
    Analysis and control statement inventory:
                     hb 1     
                   info 6     
    
    Output statements:
                 .probe 0     
               .measure 0     
                   save 0     
    
    Time for parsing: CPU = 4.999 ms, elapsed = 5.84388 ms.
    Time accumulated: CPU = 328.949 ms, elapsed = 467.271 ms.
    Peak resident memory used = 56.3 Mbytes.
    
    ~~~~~~~~~~~~~~~~~~~~~~
    Pre-Simulation Summary
    ~~~~~~~~~~~~~~~~~~~~~~
    ~~~~~~~~~~~~~~~~~~~~~~
    Entering remote command mode using MPSC service (spectre, ipi, v0.0, spectre0_13383_7, ).
    
    Warning from spectre.
        WARNING (SPECTRE-16707): Only tran supports psfxl format, result of other analyses will be in psfbin format.
    Warning from spectre.
        WARNING (SPCRTRF-15267): The number of sources 0 is less than the number of funds 1 set in analysis.Please make sure the analysis is set up correctly.
    
    Fundamental 0 in fundfreqs:  period = 303.03 ps, freq = 3.3 GHz, harms = 5, oversample = 1.
    Fundamental 1 in fundfreqs:  period = 151.515 ps, freq = 6.6 GHz, harms = 5, oversample = 1.
    
    ****************************************************************
    Harmonic Balance Steady State Analysis `hb': largefund = 3.3 GHz
    ****************************************************************
    Use semi-autonomous solver
    Warning:  Commensurate tone frequencies are detected. Although simulation result won't be affected, you might want to use incommensurate frequencies for convenience
    Trying `homotopy = gmin'.
    
    Notice from spectre during DC analysis, during periodic steady state analysis, during Harmonic Balance Steady State Analysis `hb'.
        GminDC = 1 pS is large enough to noticeably affect the DC solution.
            dV(net026) = -54.9449 mV
            Use the `gmin_check' option to eliminate or expand this report.
        Bad pivoting is found during DC analysis. Option dc_pivot_check=yes is recommended for possible improvement of convergence.
    
    DC simulation time: CPU = 27.996 ms, elapsed = 27.565 ms.
    
    Output and IC/nodeset summary:
                     ic     1       
    
    
    Using linear IC
    Linear IC: estimated frequency is 2.76904e+09 Hz
    
    ================================
    `hb': time = (0 s -> 15.1515 ns)
    ================================
    
    Output and IC/nodeset summary:
                     ic     1       
    
    Important parameter values in tstab integration:
        start = 0 s
        outputstart = 0 s
        stop = 15.1515 ns
        step = 15.1515 ps
        maxstep = 3.0303 ps
        ic = all
        useprevic = no
        skipdc = no
        reltol = 1e-03
        abstol(V) = 1 uV
        abstol(I) = 1 pA
        temp = 27 C
        tnom = 27 C
        tempeffects = all
        method = traponly
        lteratio = 3.5
        relref = sigglobal
        cmin = 0 F
        gmin = 1 pS
    
        hb: time = 379.5 ps     (2.5 %), step = 3.03 ps       (20 m%)
        hb: time = 1.137 ns     (7.5 %), step = 3.03 ps       (20 m%)
        hb: time = 1.895 ns    (12.5 %), step = 3.03 ps       (20 m%)
        hb: time = 2.652 ns    (17.5 %), step = 3.03 ps       (20 m%)
        hb: time = 3.41 ns     (22.5 %), step = 3.03 ps       (20 m%)
        hb: time = 4.167 ns    (27.5 %), step = 3.03 ps       (20 m%)
        hb: time = 4.925 ns    (32.5 %), step = 3.03 ps       (20 m%)
        hb: time = 5.683 ns    (37.5 %), step = 3.03 ps       (20 m%)
        hb: time = 6.44 ns     (42.5 %), step = 3.03 ps       (20 m%)
        hb: time = 7.198 ns    (47.5 %), step = 3.03 ps       (20 m%)
        hb: time = 7.955 ns    (52.5 %), step = 3.03 ps       (20 m%)
        hb: time = 8.713 ns    (57.5 %), step = 3.03 ps       (20 m%)
    99% of the nodes have reached steady-state after 9.09166 ns.
        hb: time = 9.47 ns     (62.5 %), step = 1.212 ps       (8 m%)
        hb: time = 10.23 ns    (67.5 %), step = 1.212 ps       (8 m%)
    The Estimated oscillating frequency from Tstab Tran is = 3.02965 GHz . 
    
    =======================================
    `hb': time = (10.3038 ns -> 10.6339 ns)
    =======================================
    
    Output and IC/nodeset summary:
                     ic     1       
    
        hb: time = 10.31 ns    (2.99 %), step = 1.65 ps      (500 m%)
        hb: time = 10.33 ns    (7.99 %), step = 1.65 ps      (500 m%)
        hb: time = 10.35 ns      (13 %), step = 1.65 ps      (500 m%)
        hb: time = 10.36 ns      (18 %), step = 1.65 ps      (500 m%)
        hb: time = 10.38 ns      (23 %), step = 1.65 ps      (500 m%)
        hb: time = 10.4 ns       (28 %), step = 1.65 ps      (500 m%)
        hb: time = 10.41 ns      (33 %), step = 1.65 ps      (500 m%)
        hb: time = 10.43 ns      (38 %), step = 1.65 ps      (500 m%)
        hb: time = 10.45 ns      (43 %), step = 1.65 ps      (500 m%)
        hb: time = 10.46 ns      (48 %), step = 1.65 ps      (500 m%)
        hb: time = 10.48 ns      (53 %), step = 1.65 ps      (500 m%)
        hb: time = 10.5 ns       (58 %), step = 1.65 ps      (500 m%)
        hb: time = 10.51 ns      (63 %), step = 1.65 ps      (500 m%)
        hb: time = 10.53 ns      (68 %), step = 1.65 ps      (500 m%)
        hb: time = 10.54 ns      (73 %), step = 1.65 ps      (500 m%)
        hb: time = 10.56 ns      (78 %), step = 1.65 ps      (500 m%)
        hb: time = 10.58 ns      (83 %), step = 1.65 ps      (500 m%)
        hb: time = 10.59 ns      (88 %), step = 1.65 ps      (500 m%)
        hb: time = 10.61 ns      (93 %), step = 1.65 ps      (500 m%)
        hb: time = 10.63 ns      (98 %), step = 1.65 ps      (500 m%)
    
    Notice from spectre during Harmonic Balance Steady State Analysis `hb'.
        Auto harmonic calculation has chosen 10 harmonics for tone-1.
    
    Warning:  Commensurate tone frequencies are detected. Although simulation result won't be affected, you might want to use incommensurate frequencies for convenience
    Pin node is 142, amplitude is 0.193425
    Pinning node: 142, harm: 1, name: M4:int_d, value: (0.139101, 0.134403)
    
    ==============================
         Harmonic balance
      hbhomotopy=tone (1-tone)
    ==============================
    Important HB parameters:
        RelTol=1.00e-04
        abstol(I)=1.00e-12 A
        abstol(V)=1.00e-06 V
        residualtol=1.00e+00
        lteratio=3.50e+00
        steadyratio=1.00e+00
        maxperiods=100
    
    
    ********** initial residual **********
    Resd Norm=9.14e+02  at node I19.M3:int_g  harm=(10 0)
    
    ********** iter = 1 **********
    Delta Norm=3.67e+02  at node I20.V3:p  harm=(0 0)
    Resd Norm=1.43e+03  at node M0:int_d  harm=(2 0)
    Frequency= 3.0296e+09 Hz, delta f= 0.00e+00
    
    ********** iter = 2 **********
    Delta Norm=1.37e+01  at node I20.V0:p  harm=(2 0)
    Resd Norm=1.42e+03  at node M0:int_d  harm=(2 0)
    Frequency= 3.0304e+09 Hz, delta f= 7.58e+05
    
    ********** iter = 3 **********
    Delta Norm=2.10e+02  at node M0:int_s  harm=(2 0)
    Resd Norm=3.88e+02  at node I20.M0:int_d  harm=(0 0)
    Frequency= 3.0451e+09 Hz, delta f= 1.47e+07
    
    ********** iter = 4 **********
    Delta Norm=5.76e+01  at node I20.V0:p  harm=(2 0)
    Resd Norm=3.78e+02  at node I20.M0:int_d  harm=(0 0)
    Frequency= 3.0438e+09 Hz, delta f= -1.30e+06
    
    ********** iter = 5 **********
    Delta Norm=7.88e+01  at node V2:p  harm=(2 0)
    Resd Norm=3.12e+02  at node I20.M0:int_d  harm=(0 0)
    Frequency= 3.0398e+09 Hz, delta f= -3.94e+06
    
    ********** iter = 6 **********
    Delta Norm=1.70e+02  at node V2:p  harm=(2 0)
    Resd Norm=2.27e+02  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0341e+09 Hz, delta f= -5.77e+06
    
    ********** iter = 7 **********
    Damping Factor is 0.2 
    Delta Norm=8.76e+01  at node V2:p  harm=(4 0)
    Resd Norm=2.00e+02  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0335e+09 Hz, delta f= -5.42e+05
    
    ********** iter = 8 **********
    Damping Factor is 0.1 
    Delta Norm=7.27e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.92e+02  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0328e+09 Hz, delta f= -7.41e+05
    
    ********** iter = 9 **********
    Damping Factor is 0.1 
    Delta Norm=1.07e+02  at node V2:p  harm=(4 0)
    Resd Norm=1.94e+02  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0344e+09 Hz, delta f= 1.63e+06
    
    ********** iter = 10 **********
    Delta Norm=2.74e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.03e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0362e+09 Hz, delta f= 1.80e+06
    
    ********** iter = 11 **********
    Damping Factor is 0.1 
    Delta Norm=7.77e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.04e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0354e+09 Hz, delta f= -8.15e+05
    
    ********** iter = 12 **********
    Damping Factor is 0.1 
    Delta Norm=1.24e+02  at node V2:p  harm=(4 0)
    Resd Norm=1.21e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0369e+09 Hz, delta f= 1.48e+06
    
    ********** iter = 13 **********
    Damping Factor is 0.2 
    Delta Norm=4.89e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.17e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0362e+09 Hz, delta f= -6.54e+05
    
    ********** iter = 14 **********
    Delta Norm=1.13e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.45e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0362e+09 Hz, delta f= 7.17e+03
    
    ********** iter = 15 **********
    Delta Norm=1.24e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.12e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0368e+09 Hz, delta f= 5.25e+05
    
    ********** iter = 16 **********
    Damping Factor is 0.1 
    Delta Norm=6.90e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.11e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0361e+09 Hz, delta f= -6.77e+05
    
    ********** iter = 17 **********
    Damping Factor is 0.1 
    Delta Norm=2.25e+02  at node V2:p  harm=(4 0)
    Resd Norm=2.23e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0385e+09 Hz, delta f= 2.44e+06
    
    ********** iter = 18 **********
    Delta Norm=4.46e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.67e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0376e+09 Hz, delta f= -9.40e+05
    
    ********** iter = 19 **********
    Damping Factor is 0.2 
    Delta Norm=7.07e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.43e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0371e+09 Hz, delta f= -4.80e+05
    
    ********** iter = 20 **********
    Damping Factor is 0.1 
    Delta Norm=7.39e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.41e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0364e+09 Hz, delta f= -7.39e+05
    
    ********** iter = 21 **********
    Damping Factor is 0.1 
    Delta Norm=2.93e+02  at node V2:p  harm=(4 0)
    Resd Norm=3.78e+02  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0399e+09 Hz, delta f= 3.53e+06
    
    ********** iter = 22 **********
    Delta Norm=2.44e+02  at node V2:p  harm=(4 0)
    Resd Norm=3.28e+02  at node I19.M3:int_g  harm=(10 0)
    Frequency= 3.0372e+09 Hz, delta f= -2.69e+06
    
    ********** iter = 23 **********
    Delta Norm=8.88e+01  at node V2:p  harm=(4 0)
    Resd Norm=6.57e+01  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0372e+09 Hz, delta f= 1.11e+04
    
    ********** iter = 24 **********
    Damping Factor is 0.1 
    Delta Norm=4.37e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=6.54e+01  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0369e+09 Hz, delta f= -3.62e+05
    
    ********** iter = 25 **********
    Damping Factor is 0.1 
    Delta Norm=8.28e+01  at node V2:p  harm=(4 0)
    Resd Norm=8.26e+01  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0361e+09 Hz, delta f= -7.83e+05
    
    ********** iter = 26 **********
    Damping Factor is 0.1 
    Delta Norm=2.30e+02  at node V2:p  harm=(4 0)
    Resd Norm=2.23e+02  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0386e+09 Hz, delta f= 2.56e+06
    
    ********** iter = 27 **********
    Delta Norm=8.42e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.16e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0364e+09 Hz, delta f= -2.27e+06
    
    ********** iter = 28 **********
    Damping Factor is 0.1 
    Delta Norm=3.18e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.07e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0362e+09 Hz, delta f= -1.74e+05
    
    ********** iter = 29 **********
    Damping Factor is 0.1 
    Delta Norm=3.93e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.01e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0359e+09 Hz, delta f= -2.97e+05
    
    ********** iter = 30 **********
    Damping Factor is 0.1 
    Delta Norm=7.48e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.10e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0351e+09 Hz, delta f= -7.68e+05
    
    ********** iter = 31 **********
    Damping Factor is 0.1 
    Delta Norm=9.39e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.32e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0364e+09 Hz, delta f= 1.28e+06
    
    ********** iter = 32 **********
    Delta Norm=6.16e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.13e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0362e+09 Hz, delta f= -1.69e+05
    
    ********** iter = 33 **********
    Damping Factor is 0.1 
    Delta Norm=2.83e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.04e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0361e+09 Hz, delta f= -1.11e+05
    
    ********** iter = 34 **********
    Damping Factor is 0.1 
    Delta Norm=5.03e+01  at node V2:p  harm=(4 0)
    Resd Norm=9.93e+01  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0358e+09 Hz, delta f= -3.49e+05
    
    ********** iter = 35 **********
    Damping Factor is 0.1 
    Delta Norm=1.10e+02  at node V2:p  harm=(4 0)
    Resd Norm=1.19e+02  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0347e+09 Hz, delta f= -1.03e+06
    
    ********** iter = 36 **********
    Damping Factor is 0.1 
    Delta Norm=1.06e+02  at node V2:p  harm=(4 0)
    Resd Norm=1.42e+02  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0361e+09 Hz, delta f= 1.38e+06
    
    ********** iter = 37 **********
    Damping Factor is 0.1 
    Delta Norm=6.66e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.47e+02  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0354e+09 Hz, delta f= -7.71e+05
    
    ********** iter = 38 **********
    Delta Norm=4.34e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=9.98e+01  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0353e+09 Hz, delta f= -3.41e+04
    
    ********** iter = 39 **********
    Damping Factor is 0.1 
    Delta Norm=2.81e+02  at node V2:p  harm=(4 0)
    Resd Norm=3.77e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0325e+09 Hz, delta f= -2.85e+06
    
    ********** iter = 40 **********
    Delta Norm=2.45e+02  at node V2:p  harm=(4 0)
    Resd Norm=2.79e+02  at node I20.M0:int_d  harm=(10 0)
    Frequency= 3.0344e+09 Hz, delta f= 1.88e+06
    
    ********** iter = 41 **********
    Damping Factor is 0.1 
    Delta Norm=1.04e+02  at node V2:p  harm=(4 0)
    Resd Norm=2.85e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0358e+09 Hz, delta f= 1.49e+06
    
    ********** iter = 42 **********
    Damping Factor is 0.2 
    Delta Norm=9.93e+01  at node V2:p  harm=(4 0)
    Resd Norm=2.66e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0348e+09 Hz, delta f= -1.09e+06
    
    ********** iter = 43 **********
    Damping Factor is 0.1 
    Delta Norm=8.82e+01  at node V2:p  harm=(4 0)
    Resd Norm=2.68e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0361e+09 Hz, delta f= 1.32e+06
    
    ********** iter = 44 **********
    Delta Norm=9.73e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.94e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0339e+09 Hz, delta f= -2.17e+06
    
    ********** iter = 45 **********
    Damping Factor is 0.1 
    Delta Norm=2.91e+02  at node V2:p  harm=(4 0)
    Resd Norm=4.00e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0379e+09 Hz, delta f= 4.00e+06
    
    ********** iter = 46 **********
    Delta Norm=2.83e+02  at node V2:p  harm=(4 0)
    Resd Norm=3.25e+02  at node I20.M0:int_d  harm=(4 0)
    Frequency= 3.0355e+09 Hz, delta f= -2.40e+06
    
    ********** iter = 47 **********
    Delta Norm=9.05e+01  at node V2:p  harm=(4 0)
    Resd Norm=9.97e+01  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0367e+09 Hz, delta f= 1.21e+06
    
    ********** iter = 48 **********
    Damping Factor is 0.1 
    Delta Norm=1.27e+02  at node V2:p  harm=(4 0)
    Resd Norm=1.28e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0355e+09 Hz, delta f= -1.24e+06
    
    ********** iter = 49 **********
    Damping Factor is 0.1 
    Delta Norm=1.05e+02  at node V2:p  harm=(4 0)
    Resd Norm=1.49e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0366e+09 Hz, delta f= 1.16e+06
    
    ********** iter = 50 **********
    Damping Factor is 0.1 
    Delta Norm=1.96e+02  at node V2:p  harm=(4 0)
    Resd Norm=2.45e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0389e+09 Hz, delta f= 2.22e+06
    
    ********** iter = 51 **********
    Delta Norm=9.55e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.37e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0364e+09 Hz, delta f= -2.48e+06
    
    ********** iter = 52 **********
    Damping Factor is 0.2 
    Delta Norm=6.12e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.22e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0360e+09 Hz, delta f= -3.90e+05
    
    ********** iter = 53 **********
    Damping Factor is 0.1 
    Delta Norm=6.47e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.24e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0353e+09 Hz, delta f= -6.63e+05
    
    ********** iter = 54 **********
    Damping Factor is 0.1 
    Delta Norm=9.46e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.46e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0366e+09 Hz, delta f= 1.26e+06
    
    ********** iter = 55 **********
    Damping Factor is 0.1 
    Delta Norm=3.68e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.37e+02  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0362e+09 Hz, delta f= -3.59e+05
    
    ********** iter = 56 **********
    Delta Norm=6.67e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.12e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0361e+09 Hz, delta f= -1.49e+05
    
    ********** iter = 57 **********
    Damping Factor is 0.1 
    Delta Norm=3.04e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.05e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0359e+09 Hz, delta f= -1.46e+05
    
    ********** iter = 58 **********
    Damping Factor is 0.1 
    Delta Norm=6.39e+01  at node V2:p  harm=(4 0)
    Resd Norm=1.03e+02  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0354e+09 Hz, delta f= -5.06e+05
    
    ********** iter = 59 **********
    
    Warning from spectre during Harmonic Balance Steady State Analysis `hb'.
        WARNING (CMI-2682): I19.M4: The bulk-drain junction forward bias voltage (979.257 mV) exceeds `VjdmFwd' = 941.396 mV.  The results are now incorrect because the junction current model has been linearized
    Notice from spectre during Harmonic Balance Steady State Analysis `hb'.
        I19.M4: The bulk-drain junction returns to normal bias condition
    Warning from spectre during Harmonic Balance Steady State Analysis `hb'.
        WARNING (CMI-2682): I19.M4: The bulk-drain junction forward bias voltage (979.239 mV) exceeds `VjdmFwd' = 941.396 mV.  The results are now incorrect because the junction current model has been linearized
    Notice from spectre during Harmonic Balance Steady State Analysis `hb'.
        I19.M4: The bulk-drain junction returns to normal bias condition
    
    Damping Factor is 0.1 
    Delta Norm=4.79e+02  at node V2:p  harm=(4 0)
    Resd Norm=1.14e+03  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0303e+09 Hz, delta f= -5.14e+06
    
    ********** iter = 60 **********
    Delta Norm=2.68e+02  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.73e+02  at node I20.M0:int_g  harm=(6 0)
    Frequency= 3.0314e+09 Hz, delta f= 1.09e+06
    
    ********** iter = 61 **********
    Delta Norm=1.30e+02  at node I19.V1:p  harm=(8 0)
    Resd Norm=9.23e+01  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0354e+09 Hz, delta f= 3.98e+06
    
    ********** iter = 62 **********
    Delta Norm=1.21e+02  at node I19.V1:p  harm=(8 0)
    Resd Norm=8.35e+01  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0345e+09 Hz, delta f= -8.24e+05
    
    ********** iter = 63 **********
    Delta Norm=1.91e+01  at node I20.net020  harm=(6 0)
    Resd Norm=8.89e+00  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0344e+09 Hz, delta f= -9.45e+04
    
    ********** iter = 64 **********
    Damping Factor is 0.4407 
    Delta Norm=3.13e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=6.72e+00  at node I19.M3:int_g  harm=(10 0)
    Frequency= 3.0347e+09 Hz, delta f= 2.65e+05
    
    ********** iter = 65 **********
    Damping Factor is 0.334 
    Delta Norm=2.46e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=6.11e+00  at node I19.M3:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= 1.32e+05
    
    ********** iter = 66 **********
    Damping Factor is 0.182 
    Delta Norm=1.81e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.87e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= 5.98e+04
    
    ********** iter = 67 **********
    Damping Factor is 0.07578 
    Delta Norm=1.13e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.79e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= 2.07e+04
    
    ********** iter = 68 **********
    Damping Factor is 0.06594 
    Delta Norm=1.04e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.83e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= 1.54e+04
    
    ********** iter = 69 **********
    Damping Factor is 0.1894 
    Delta Norm=1.79e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.84e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.66e+04
    
    ********** iter = 70 **********
    Damping Factor is 0.08509 
    Delta Norm=1.20e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.80e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= 1.80e+04
    
    ********** iter = 71 **********
    Damping Factor is 0.08699 
    Delta Norm=1.17e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.84e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.47e+04
    
    ********** iter = 72 **********
    Damping Factor is 0.09907 
    Delta Norm=1.29e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.80e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= 1.87e+04
    
    ********** iter = 73 **********
    Damping Factor is 0.2083 
    Delta Norm=1.86e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.93e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.27e+04
    
    ********** iter = 74 **********
    Damping Factor is 0.1848 
    Delta Norm=1.78e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.94e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 2.77e+04
    
    ********** iter = 75 **********
    Damping Factor is 0.1 
    Delta Norm=4.86e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.25e+01  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= -6.13e+04
    
    ********** iter = 76 **********
    Delta Norm=4.64e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.34e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= -1.17e+05
    
    ********** iter = 77 **********
    Damping Factor is 0.1592 
    Delta Norm=1.24e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.05e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= 5.91e+04
    
    ********** iter = 78 **********
    Damping Factor is 0.1013 
    Delta Norm=9.59e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.88e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 3.72e+04
    
    ********** iter = 79 **********
    Damping Factor is 0.05445 
    Delta Norm=6.84e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.79e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 2.14e+04
    
    ********** iter = 80 **********
    Damping Factor is 0.02984 
    Delta Norm=4.90e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.74e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 1.27e+04
    
    ********** iter = 81 **********
    Damping Factor is 0.1 
    Delta Norm=2.30e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.85e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 5.14e+04
    
    ********** iter = 82 **********
    Delta Norm=2.05e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.64e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -4.10e+04
    
    ********** iter = 83 **********
    Damping Factor is 0.1 
    Delta Norm=3.95e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=7.87e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0350e+09 Hz, delta f= 7.82e+04
    
    ********** iter = 84 **********
    Damping Factor is 0.3935 
    Delta Norm=3.04e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=7.84e+00  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0350e+09 Hz, delta f= 2.23e+04
    
    ********** iter = 85 **********
    Damping Factor is 0.1 
    Delta Norm=2.92e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=9.60e+00  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0350e+09 Hz, delta f= -4.41e+04
    
    ********** iter = 86 **********
    Delta Norm=1.00e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.02e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -7.80e+04
    
    ********** iter = 87 **********
    Damping Factor is 0.03891 
    Delta Norm=5.86e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.96e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 1.63e+04
    
    ********** iter = 88 **********
    Damping Factor is 0.1 
    Delta Norm=2.21e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.58e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0350e+09 Hz, delta f= 5.19e+04
    
    ********** iter = 89 **********
    Damping Factor is 0.1 
    Delta Norm=2.27e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.58e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.86e+04
    
    ********** iter = 90 **********
    Damping Factor is 0.1023 
    Delta Norm=1.16e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.56e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0350e+09 Hz, delta f= 1.84e+04
    
    ********** iter = 91 **********
    Damping Factor is 0.1 
    Delta Norm=4.26e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=9.64e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= -6.50e+04
    
    ********** iter = 92 **********
    Delta Norm=2.82e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.08e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= -7.84e+04
    
    ********** iter = 93 **********
    Damping Factor is 0.2674 
    Delta Norm=1.99e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.35e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 8.25e+04
    
    ********** iter = 94 **********
    Damping Factor is 0.1077 
    Delta Norm=1.18e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.09e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 3.48e+04
    
    ********** iter = 95 **********
    Damping Factor is 0.1 
    Delta Norm=2.27e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.07e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0350e+09 Hz, delta f= 4.96e+04
    
    ********** iter = 96 **********
    Damping Factor is 0.1147 
    Delta Norm=1.27e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.97e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0350e+09 Hz, delta f= -8.65e+03
    
    ********** iter = 97 **********
    Damping Factor is 0.1 
    Delta Norm=2.99e+02  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.72e+02  at node I20.M0:int_d  harm=(4 0)
    Frequency= 3.0345e+09 Hz, delta f= -4.56e+05
    
    ********** iter = 98 **********
    Delta Norm=7.36e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.38e+02  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0361e+09 Hz, delta f= 1.59e+06
    
    ********** iter = 99 **********
    Delta Norm=6.84e+01  at node V2:p  harm=(4 0)
    Resd Norm=4.99e+01  at node I20.M0:int_d  harm=(10 0)
    Frequency= 3.0340e+09 Hz, delta f= -2.08e+06
    
    ********** iter = 100 **********
    Delta Norm=9.79e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.52e+01  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0348e+09 Hz, delta f= 7.73e+05
    Pinning node: 142, harm: 1, name: M4:int_d, value: (0.115743, 0.134403)
    
    ==============================
         Harmonic balance
      hbhomotopy=tone (all-tone)
    ==============================
    Important HB parameters:
        RelTol=1.00e-04
        abstol(I)=1.00e-12 A
        abstol(V)=1.00e-06 V
        residualtol=1.00e+00
        lteratio=3.50e+00
        steadyratio=1.00e+00
        maxperiods=100
    
    
    ********** initial residual **********
    Resd Norm=4.52e+01  at node I20.M0:int_d  harm=(8 0)
    
    ********** iter = 1 **********
    Delta Norm=1.15e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.32e+01  at node I20.M0:int_d  harm=(4 0)
    Frequency= 3.0348e+09 Hz, delta f= -1.36e+04
    
    ********** iter = 2 **********
    Delta Norm=4.06e+00  at node I19.V1:p  harm=(4 0)
    Resd Norm=2.87e+01  at node I20.M0:int_d  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= 1.19e+04
    
    ********** iter = 3 **********
    Delta Norm=3.22e+00  at node I19.V1:p  harm=(4 0)
    Resd Norm=2.72e+01  at node I20.M0:int_d  harm=(10 0)
    Frequency= 3.0347e+09 Hz, delta f= -9.62e+04
    
    ********** iter = 4 **********
    Delta Norm=5.35e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=1.64e+01  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0348e+09 Hz, delta f= 6.89e+04
    
    ********** iter = 5 **********
    Delta Norm=2.94e+00  at node V2:p  harm=(4 0)
    Resd Norm=1.41e+01  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0350e+09 Hz, delta f= 2.30e+05
    
    ********** iter = 6 **********
    Delta Norm=1.21e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=8.87e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0347e+09 Hz, delta f= -2.94e+05
    
    ********** iter = 7 **********
    Delta Norm=6.16e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=7.35e+00  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0345e+09 Hz, delta f= -1.74e+05
    
    ********** iter = 8 **********
    Delta Norm=2.21e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=6.89e+00  at node I20.M0:int_g  harm=(8 0)
    Frequency= 3.0347e+09 Hz, delta f= 1.53e+05
    
    ********** iter = 9 **********
    Delta Norm=1.15e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.97e+00  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0347e+09 Hz, delta f= 3.78e+04
    
    ********** iter = 10 **********
    Damping Factor is 0.8841 
    Delta Norm=2.96e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=6.38e+00  at node I20.M0:int_g  harm=(6 0)
    Frequency= 3.0349e+09 Hz, delta f= 2.12e+05
    
    ********** iter = 11 **********
    Delta Norm=8.78e-01  at node C3.ls:1  harm=(1 0)
    Resd Norm=5.42e+00  at node I20.M0:int_g  harm=(6 0)
    Frequency= 3.0349e+09 Hz, delta f= 9.89e+01
    
    ********** iter = 12 **********
    Delta Norm=7.50e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.42e+00  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0349e+09 Hz, delta f= -4.90e+04
    
    ********** iter = 13 **********
    Damping Factor is 0.627 
    Delta Norm=2.73e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.81e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 4.74e+04
    
    ********** iter = 14 **********
    Delta Norm=7.45e-01  at node V2:p  harm=(2 0)
    Resd Norm=4.30e+00  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0349e+09 Hz, delta f= 2.14e+04
    
    ********** iter = 15 **********
    Delta Norm=1.33e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.49e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= -8.20e+04
    
    ********** iter = 16 **********
    Delta Norm=1.74e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.21e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.60e+03
    
    ********** iter = 17 **********
    Delta Norm=1.32e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.14e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.20e+04
    
    ********** iter = 18 **********
    Damping Factor is 0.2352 
    Delta Norm=1.36e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.61e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 4.06e+04
    
    ********** iter = 19 **********
    Damping Factor is 0.2395 
    Delta Norm=1.57e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.02e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.93e+04
    
    ********** iter = 20 **********
    Delta Norm=1.57e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.10e+00  at node I20.M7:int_g  harm=(0 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.05e+04
    
    ********** iter = 21 **********
    Damping Factor is 0.2093 
    Delta Norm=1.28e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.45e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 4.00e+04
    
    ********** iter = 22 **********
    Damping Factor is 0.2269 
    Delta Norm=1.49e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.87e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.88e+04
    
    ********** iter = 23 **********
    Delta Norm=1.16e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.08e+00  at node I20.M7:int_g  harm=(0 0)
    Frequency= 3.0348e+09 Hz, delta f= -1.06e+04
    
    ********** iter = 24 **********
    Damping Factor is 0.1879 
    Delta Norm=1.23e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.33e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 4.11e+04
    
    ********** iter = 25 **********
    Damping Factor is 0.7168 
    Delta Norm=2.01e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.79e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0348e+09 Hz, delta f= -3.11e+04
    
    ********** iter = 26 **********
    Delta Norm=5.04e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.30e+00  at node I20.M7:int_g  harm=(0 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.17e+04
    
    ********** iter = 27 **********
    Delta Norm=2.22e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.52e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 8.87e+04
    
    ********** iter = 28 **********
    Delta Norm=8.90e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.59e+00  at node I20.M0:int_d  harm=(2 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.35e+04
    
    ********** iter = 29 **********
    Damping Factor is 0.05813 
    Delta Norm=6.50e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.59e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.36e+04
    
    ********** iter = 30 **********
    Damping Factor is 0.0793 
    Delta Norm=7.52e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.79e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 1.86e+04
    
    ********** iter = 31 **********
    Damping Factor is 0.3422 
    Delta Norm=1.54e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.23e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= -3.53e+04
    
    ********** iter = 32 **********
    Delta Norm=1.57e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.05e+00  at node I20.M5:int_g  harm=(5 0)
    Frequency= 3.0348e+09 Hz, delta f= -1.57e+04
    
    ********** iter = 33 **********
    Damping Factor is 0.175 
    Delta Norm=1.19e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.86e+00  at node I20.M5:int_g  harm=(5 0)
    Frequency= 3.0349e+09 Hz, delta f= 3.80e+04
    
    ********** iter = 34 **********
    Damping Factor is 0.1 
    Delta Norm=2.53e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.41e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0348e+09 Hz, delta f= -5.72e+04
    
    ********** iter = 35 **********
    Delta Norm=6.18e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.17e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= 1.13e+04
    
    ********** iter = 36 **********
    Delta Norm=1.19e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.20e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= -5.59e+04
    
    ********** iter = 37 **********
    Delta Norm=1.68e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.43e+00  at node I20.M7:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 8.51e+04
    
    ********** iter = 38 **********
    Delta Norm=2.06e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.50e+00  at node I20.M7:int_g  harm=(4 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.49e+04
    
    ********** iter = 39 **********
    Damping Factor is 0.09926 
    Delta Norm=9.88e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.43e+00  at node I20.M7:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 3.01e+04
    
    ********** iter = 40 **********
    Damping Factor is 0.1056 
    Delta Norm=1.02e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.45e+00  at node I20.M7:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.17e+04
    
    ********** iter = 41 **********
    Damping Factor is 0.2448 
    Delta Norm=1.47e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.43e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 4.14e+04
    
    ********** iter = 42 **********
    Delta Norm=7.90e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.52e+00  at node I20.M7:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.21e+04
    
    ********** iter = 43 **********
    Damping Factor is 0.3068 
    Delta Norm=1.74e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.29e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.23e+04
    
    ********** iter = 44 **********
    Delta Norm=2.36e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.23e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0348e+09 Hz, delta f= -1.61e+03
    
    ********** iter = 45 **********
    Damping Factor is 0.1553 
    Delta Norm=1.17e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.12e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= 3.62e+04
    
    ********** iter = 46 **********
    Damping Factor is 0.1518 
    Delta Norm=1.17e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.19e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.43e+04
    
    ********** iter = 47 **********
    Damping Factor is 0.8965 
    Delta Norm=3.27e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.52e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.96e+03
    
    ********** iter = 48 **********
    Damping Factor is 0.1486 
    Delta Norm=1.19e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.68e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= 3.32e+04
    
    ********** iter = 49 **********
    Damping Factor is 0.2678 
    Delta Norm=1.70e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.39e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -3.03e+04
    
    ********** iter = 50 **********
    Delta Norm=3.99e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.73e+00  at node I20.M7:int_g  harm=(0 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.19e+04
    
    ********** iter = 51 **********
    Damping Factor is 0.4495 
    Delta Norm=1.96e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.43e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 6.25e+04
    
    ********** iter = 52 **********
    Delta Norm=1.23e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.14e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.26e+04
    
    ********** iter = 53 **********
    Damping Factor is 0.4742 
    Delta Norm=1.90e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.59e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.81e+04
    
    ********** iter = 54 **********
    Delta Norm=2.04e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.16e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= -2.11e+04
    
    ********** iter = 55 **********
    Damping Factor is 0.637 
    Delta Norm=1.90e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.27e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 6.42e+04
    
    ********** iter = 56 **********
    Delta Norm=9.93e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.86e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.16e+04
    
    ********** iter = 57 **********
    Damping Factor is 0.2153 
    Delta Norm=1.34e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.15e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.47e+04
    
    ********** iter = 58 **********
    Damping Factor is 0.2975 
    Delta Norm=1.49e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.53e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 3.76e+04
    
    ********** iter = 59 **********
    Delta Norm=4.23e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.13e+00  at node I20.M7:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.10e+04
    
    ********** iter = 60 **********
    Damping Factor is 0.3768 
    Delta Norm=1.75e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.63e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.48e+04
    
    ********** iter = 61 **********
    Delta Norm=1.49e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.34e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.47e+04
    
    ********** iter = 62 **********
    Damping Factor is 0.3749 
    Delta Norm=1.70e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.27e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 4.85e+04
    
    ********** iter = 63 **********
    Delta Norm=9.49e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.20e+00  at node I20.M7:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.77e+04
    
    ********** iter = 64 **********
    Damping Factor is 0.2713 
    Delta Norm=1.58e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.58e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.50e+04
    
    ********** iter = 65 **********
    Delta Norm=6.19e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.01e+00  at node I20.M7:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= 8.93e+03
    
    ********** iter = 66 **********
    Damping Factor is 0.1 
    Delta Norm=2.58e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.32e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 6.32e+04
    
    ********** iter = 67 **********
    Delta Norm=5.81e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.61e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0350e+09 Hz, delta f= 2.50e+04
    
    ********** iter = 68 **********
    Delta Norm=2.38e+00  at node I19.V2:p  harm=(4 0)
    Resd Norm=3.73e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -5.51e+04
    
    ********** iter = 69 **********
    Damping Factor is 0.539 
    Delta Norm=1.91e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.80e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 2.94e+02
    
    ********** iter = 70 **********
    Delta Norm=6.42e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.27e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.93e+04
    
    ********** iter = 71 **********
    Damping Factor is 0.5722 
    Delta Norm=2.46e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.54e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= -4.40e+04
    
    ********** iter = 72 **********
    Damping Factor is 0.8576 
    Delta Norm=6.01e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.19e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 2.21e+04
    
    ********** iter = 73 **********
    Delta Norm=6.80e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.77e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= -3.39e+04
    
    ********** iter = 74 **********
    Delta Norm=1.60e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.93e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= 5.92e+04
    
    ********** iter = 75 **********
    Delta Norm=2.66e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.67e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.07e+04
    
    ********** iter = 76 **********
    Damping Factor is 0.1 
    Delta Norm=3.04e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.97e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0350e+09 Hz, delta f= 7.69e+04
    
    ********** iter = 77 **********
    Delta Norm=1.27e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.98e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -7.24e+04
    
    ********** iter = 78 **********
    Damping Factor is 0.8711 
    Delta Norm=1.31e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.48e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0350e+09 Hz, delta f= 8.62e+04
    
    ********** iter = 79 **********
    Delta Norm=1.19e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.57e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -5.27e+04
    
    ********** iter = 80 **********
    Damping Factor is 0.8837 
    Delta Norm=9.71e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.07e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.56e+04
    
    ********** iter = 81 **********
    Delta Norm=2.10e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.33e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -3.51e+04
    
    ********** iter = 82 **********
    Delta Norm=7.34e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.07e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= -1.50e+04
    
    ********** iter = 83 **********
    Delta Norm=1.80e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.04e+00  at node I20.M5:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 7.12e+04
    
    ********** iter = 84 **********
    Delta Norm=1.31e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.19e+00  at node I20.M7:int_g  harm=(5 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.87e+04
    
    ********** iter = 85 **********
    Damping Factor is 0.09393 
    Delta Norm=9.25e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.07e+00  at node I20.M7:int_g  harm=(5 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.87e+04
    
    ********** iter = 86 **********
    Damping Factor is 0.05026 
    Delta Norm=6.62e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.01e+00  at node I20.M7:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 1.79e+04
    
    ********** iter = 87 **********
    Damping Factor is 0.1 
    Delta Norm=3.01e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.79e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0348e+09 Hz, delta f= -6.96e+04
    
    ********** iter = 88 **********
    Delta Norm=1.25e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.65e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= -5.48e+04
    
    ********** iter = 89 **********
    Delta Norm=9.26e-01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.17e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= 2.17e+04
    
    ********** iter = 90 **********
    Delta Norm=8.48e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=3.39e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0348e+09 Hz, delta f= 2.38e+04
    
    ********** iter = 91 **********
    Delta Norm=1.54e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.99e+00  at node I20.M0:int_d  harm=(8 0)
    Frequency= 3.0349e+09 Hz, delta f= 4.46e+04
    
    ********** iter = 92 **********
    Delta Norm=2.04e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.96e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -9.81e+03
    
    ********** iter = 93 **********
    Damping Factor is 0.04736 
    Delta Norm=6.31e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=2.96e+00  at node I20.M5:int_g  harm=(5 0)
    Frequency= 3.0349e+09 Hz, delta f= 1.85e+04
    
    ********** iter = 94 **********
    Damping Factor is 0.1 
    Delta Norm=2.51e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.20e+00  at node I20.M0:int_g  harm=(4 0)
    Frequency= 3.0349e+09 Hz, delta f= 6.26e+04
    
    ********** iter = 95 **********
    Delta Norm=6.58e-01  at node V2:p  harm=(2 0)
    Resd Norm=3.73e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0350e+09 Hz, delta f= 3.83e+04
    
    ********** iter = 96 **********
    Delta Norm=7.28e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.08e+00  at node I20.M5:int_g  harm=(0 0)
    Frequency= 3.0349e+09 Hz, delta f= -7.78e+04
    
    ********** iter = 97 **********
    Damping Factor is 0.757 
    Delta Norm=1.84e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.61e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -3.96e+02
    
    ********** iter = 98 **********
    Delta Norm=1.46e+00  at node V2:p  harm=(4 0)
    Resd Norm=3.95e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -2.51e+04
    
    ********** iter = 99 **********
    Damping Factor is 0.1 
    Delta Norm=1.71e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.28e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= 4.23e+04
    
    ********** iter = 100 **********
    Damping Factor is 0.8817 
    Delta Norm=6.08e+00  at node I19.V1:p  harm=(8 0)
    Resd Norm=4.77e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -1.40e+04
    
    Notice from spectre during Harmonic Balance Steady State Analysis `hb'.
        Residual norm is close to convergence, try more iterations...
    
    
    ********** iter = 101 **********
    Damping Factor is 0.5793 
    
    Warning from spectre during Harmonic Balance Steady State Analysis `hb'.
        WARNING: Newton stagnates, but the norm is very close to the desired tolerance. The solution is considered converged.
    
    Delta Norm=2.71e+01  at node I19.V1:p  harm=(8 0)
    Resd Norm=5.27e+00  at node I20.M0:int_g  harm=(10 0)
    Frequency= 3.0349e+09 Hz, delta f= -3.57e+04
    
    
    *************************************************
    Fundamental frequency is 3.03486 GHz.
    *************************************************
    
    CPU time=43 s
    
    
    Opening the PSF file ../psf/hb.fd.qpss_hb ...
    
    Opening the PSF file ../psf/hb.fi.qpss_hb ...
    Total time required for hb analysis `hb': CPU = 47.9787 s, elapsed = 48.0925 s.
    Time accumulated: CPU = 48.3087 s, elapsed = 48.6191 s.
    Peak resident memory used = 87 Mbytes.
    
    modelParameter: writing model parameter values to rawfile.
    
    Opening the PSF file ../psf/modelParameter.info ...
    element: writing instance parameter values to rawfile.
    
    Opening the PSF file ../psf/element.info ...
    outputParameter: writing output parameter values to rawfile.
    
    Opening the PSF file ../psf/outputParameter.info ...
    designParamVals: writing netlist parameters to rawfile.
    
    Opening the PSFASCII file ../psf/designParamVals.info ...
    primitives: writing primitives to rawfile.
    
    Opening the PSFASCII file ../psf/primitives.info.primitives ...
    subckts: writing subcircuits to rawfile.
    
    Opening the PSFASCII file ../psf/subckts.info.subckts ...
    

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel
  • Andrew Beckett
    Andrew Beckett over 6 years ago in reply to yefJ

    Presumably the input impedance of the mixer is high, so it will have the same problem - the capacitor still cannot charge because of the very long time constant. A simulation of a few microseconds is not going to settle if the time constants were really in the order of seconds...

    The number of iterations is settable via the "maxperiods" option on the HB options form. However, looking at the trend of the conv norms inn the log file, I doubt this will help as they appear to have stagnated - it's not that it's dropping down and has almost made it. You might find more useful info by setting the annotate option on HB options to detailed_hb (first) or internal_hb if that doesn't help.

    I suggest you contact customer support. Figuring out convergence issues without a testcase (especially in a forum) is almost impossible.

    Andrew.

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel
  • yefJ
    yefJ over 6 years ago in reply to Andrew Beckett

    Hello Andrew , i managed to solve this issue using PSS around 3.3G as shown bellow, instead of 3.3G 6.6G in HB
    The two tone in HB were used because i have two oscilators where one connected to the other as injection lock.

    so i assume that when we cant make it converge in HB  we should try PSS ? :-)

    i attached the full log in the end.

    Fullscreen 7888.log.txt Download
     
    Cadence (R) Virtuoso (R) Spectre (R) Circuit Simulator
    Version 15.1.0.801.isr17 64bit -- 19 Apr 2017
    Copyright (C) 1989-2017 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, Virtuoso and Spectre are registered trademarks of Cadence Design Systems, Inc. All others are the property of their respective holders.
    
    Includes RSA BSAFE(R) Cryptographic or Security Protocol Software from RSA Security, Inc.
    
    User: yafimv   Host: micron.eng.tau.ac.il   HostID: 428454C2   PID: 2954
    Memory  available: 17.3392 GB  physical: 33.6702 GB
    Linux   : Red Hat Enterprise Linux Server release 6.9 (Santiago)
    CPU Type: Intel(R) Xeon(R) CPU           E5420  @ 2.50GHz
            Socket: Processors [Frequency]
            0:       0 [2499.0],  2 [1998.0],  4 [1998.0],  6 [1998.0]
            1:       1 [1998.0],  3 [1998.0],  5 [1998.0],  7 [1998.0]
            
    System load averages (1min, 5min, 15min) : 7.9 %, 7.0 %, 4.9 %
    
    
    Simulating `input.scs' on micron.eng.tau.ac.il at 3:58:39 PM, Mon Feb 25, 2019 (process id: 2954).
    Current working directory: /data.cc/data/a/home/cc/students/enginer/yafimv/simulation/ex5_mixerr_3_33_interfer2/spectre/schematic/netlist
    Command line:
        /eda_disk/cadence/tools/MMSIM/151/tools/bin/spectre -64 input.scs  \
            +escchars +log ../psf/spectre.out +inter=mpsc  \
            +mpssession=spectre0_13383_14 -format psfxl -raw ../psf  \
            +lqtimeout 900 -maxw 5 -maxn 5
    spectre pid = 2954
    
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libinfineon_sh.so ...
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libphilips_o_sh.so ...
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libphilips_sh.so ...
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libsparam_sh.so ...
    Loading /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/cmi/lib/64bit/5.0/libstmodels_sh.so ...
    Reading file:  /data.cc/data/a/home/cc/students/enginer/yafimv/simulation/ex5_mixerr_3_33_interfer2/spectre/schematic/netlist/input.scs
    Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/configs/spectre.cfg
    Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/configs/mapsubckt.cfg
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_NVT_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_NVT_V021.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_V111.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_V111.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP25_V113.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP25_V113.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_25_rf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_25_rf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_33IO_GOX52_VT21.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_33IO_GOX52_VT21.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_RF_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_25IO_RF_V021.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90-resistor-control-V041.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_res.va
    Reading link:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/constants.h
    Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/constants.vams
    Reading link:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/discipline.h
    Reading file:  /eda_disk/cadence/tools/MMSIM/151/tools.lnx86/spectre/etc/ahdl/disciplines.vams
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_ppo_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_ppo_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_npo_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_npo_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rnhr_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rnhr_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rsnwell_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_rsnwell_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_nd_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_nd_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_pd_V031.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_pd_V031.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_metal_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_r_metal_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_BJT_V111.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_BJT_V111.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_DIODE_V101.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_RF_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_RF_V021.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_RF_VTAB.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_RF_VTAB.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_V102.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LL12_V102.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLHVT12_V101.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLHVT12_V101.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_V102.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLLVT12_V102.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLNVT12_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_LLNVT12_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90SP_NCAP10_V112.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90SP_NCAP10_V112.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP12_LL_V102.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_NCAP12_LL_V102.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_V061.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_V061.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPHVT10_V111.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPHVT10_V111.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPLVT10_V102.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPLVT10_V102.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPNVT10_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SPNVT10_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_mimcaps_20f_kf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_mimcaps_20f_kf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_momcaps_V041.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_momcaps_V041.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_vardiop_rf_v011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_vardiop_rf_v011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_12_llrf_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_12_llrf_V021.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp3_rfvcl_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp3_rfvcl_V011.typ.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp4_rfvcl_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/momcaps_array_vp4_rfvcl_V011.typ.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnhr_rf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnhr_rf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/res_poly.va
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnnpo_rf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnnpo_rf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnppo_rf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/rnppo_rf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_10_sprf_V011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_varmis_10_sprf_V011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/bond_pad_v011.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/bond_pad_v011.mdl.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_RF_V021.lib.scs
    Reading file:  /eda_disk/pdks/UMC/UMC90nm/Models/Spectre/L90_SP10_RF_V021.mdl.scs
    Time for NDB Parsing: CPU = 201.969 ms, elapsed = 343.811 ms.
    Time accumulated: CPU = 234.963 ms, elapsed = 343.82 ms.
    Peak resident memory used = 45.5 Mbytes.
    
    
    The CPU load for active processors is :
            Spectre  0 (82.4 %)      1 (2.9 %)       2 (17.1 %)      4 (15.2 %)
                     5 (5.9 %)       6 (11.4 %)      7 (5.9 %)      
            Other   
    
    Warning from spectre during circuit read-in.
        WARNING (SFE-2654): VerilogA module `respoly_va' override primitive/(verilogA module) `respoly_va'.
        WARNING (SFE-2654): VerilogA module `respoly_va' override primitive/(verilogA module) `respoly_va'.
    Warning from spectre during hierarchy flattening.
        WARNING (SFE-1131): Duplicate scope option `tnom' with scope `TopCircuit'. (using last value specified).
    
    Time for Elaboration: CPU = 75.989 ms, elapsed = 76.1001 ms.
    Time accumulated: CPU = 310.952 ms, elapsed = 420.2 ms.
    Peak resident memory used = 54 Mbytes.
    
    Time for EDB Visiting: CPU = 2.999 ms, elapsed = 3.07012 ms.
    Time accumulated: CPU = 313.951 ms, elapsed = 423.639 ms.
    Peak resident memory used = 54.8 Mbytes.
    
    
    Notice from spectre during topology check.
        No DC path from node `I20.M7:int_g' to ground, Gmin installed to provide path.
        No DC path from node `I20.M5:int_g' to ground, Gmin installed to provide path.
        No DC path from node `RF' to ground, Gmin installed to provide path.
        No DC path from node `M0:int_g' to ground, Gmin installed to provide path.
    
    
    Global user options:
                 reltol = 0.001
                vabstol = 1e-06
                iabstol = 1e-12
                   temp = 27
                   gmin = 1e-12
                 rforce = 1
               maxnotes = 5
               maxwarns = 5
                 digits = 5
                   cols = 80
                 pivrel = 0.001
               sensfile = ../psf/sens.output
         checklimitdest = psf
                   save = allpub
                   tnom = 25
                   tnom = 27
                 scalem = 1
                  scale = 1
    
    Scoped user options:
    
    Circuit inventory:
                  nodes 56
                  bsim4 14    
              capacitor 85    
                  diode 4     
               inductor 14    
               resistor 35    
                vsource 8     
    
    Analysis and control statement inventory:
                   info 6     
                    pss 1     
    
    Output statements:
                 .probe 0     
               .measure 0     
                   save 0     
    
    Time for parsing: CPU = 4.999 ms, elapsed = 6.17981 ms.
    Time accumulated: CPU = 318.95 ms, elapsed = 430.168 ms.
    Peak resident memory used = 56.3 Mbytes.
    
    ~~~~~~~~~~~~~~~~~~~~~~
    Pre-Simulation Summary
    ~~~~~~~~~~~~~~~~~~~~~~
    ~~~~~~~~~~~~~~~~~~~~~~
    Entering remote command mode using MPSC service (spectre, ipi, v0.0, spectre0_13383_14, ).
    
    Warning from spectre.
        WARNING (SPECTRE-16707): Only tran supports psfxl format, result of other analyses will be in psfbin format.
    
    
    **************************************************************
    Periodic Steady-State Analysis `pss': estimated fund = 3.3 GHz
    **************************************************************
    Trying `homotopy = gmin'.
    
    Notice from spectre during DC analysis, during periodic steady state analysis `pss'.
        GminDC = 1 pS is large enough to noticeably affect the DC solution.
            dV(net026) = -54.9448 mV
            Use the `gmin_check' option to eliminate or expand this report.
        Bad pivoting is found during DC analysis. Option dc_pivot_check=yes is recommended for possible improvement of convergence.
    
    DC simulation time: CPU = 28.996 ms, elapsed = 28.7771 ms.
    
    Using linear IC
    Linear IC: estimated frequency is 2.76904e+09 Hz
    
    Opening the PSF file ../psf/pss.tran.pss ...
    
    =================================
    `pss': time = (0 s -> 101.806 ns)
    =================================
    
    Output and IC/nodeset summary:
                     save   22      (current)
                     save   56      (voltage)
                     ic     1       
    
    Important parameter values in tstab integration:
        start = 0 s
        outputstart = 0 s
        stop = 101.806 ns
        period = 361.136 ps
        maxperiods = 50
        step = 100.303 ps
        maxstep = 12.1212 ps
        ic = all
        useprevic = no
        skipdc = no
        reltol = 1e-03
        abstol(V) = 1 uV
        abstol(I) = 1 pA
        temp = 27 C
        tnom = 27 C
        tempeffects = all
        method = traponly
        lteratio = 3.5
        relref = sigglobal
        cmin = 0 F
        gmin = 1 pS
    
        pss: time = 2.548 ns     (2.5 %), step = 6.06 ps     (5.95 m%)
        pss: time = 7.642 ns    (7.51 %), step = 6.827 ps    (6.71 m%)
        pss: time = 12.73 ns    (12.5 %), step = 5.523 ps    (5.43 m%)
        pss: time = 17.82 ns    (17.5 %), step = 7.86 ps     (7.72 m%)
        pss: time = 22.91 ns    (22.5 %), step = 5.192 ps     (5.1 m%)
        pss: time = 28 ns       (27.5 %), step = 7.053 ps    (6.93 m%)
        pss: time = 33.09 ns    (32.5 %), step = 5.214 ps    (5.12 m%)
        pss: time = 38.18 ns    (37.5 %), step = 7.485 ps    (7.35 m%)
        pss: time = 43.27 ns    (42.5 %), step = 4.793 ps    (4.71 m%)
        pss: time = 48.36 ns    (47.5 %), step = 6.6 ps      (6.48 m%)
        pss: time = 53.45 ns    (52.5 %), step = 5.841 ps    (5.74 m%)
        pss: time = 58.54 ns    (57.5 %), step = 6.297 ps    (6.19 m%)
        pss: time = 63.63 ns    (62.5 %), step = 7.348 ps    (7.22 m%)
        pss: time = 68.72 ns    (67.5 %), step = 6.119 ps    (6.01 m%)
        pss: time = 73.81 ns    (72.5 %), step = 7.85 ps     (7.71 m%)
        pss: time = 78.9 ns     (77.5 %), step = 4.905 ps    (4.82 m%)
        pss: time = 83.99 ns    (82.5 %), step = 7.106 ps    (6.98 m%)
        pss: time = 89.08 ns    (87.5 %), step = 5.258 ps    (5.16 m%)
        pss: time = 94.18 ns    (92.5 %), step = 8.618 ps    (8.47 m%)
        pss: time = 99.26 ns    (97.5 %), step = 5.754 ps    (5.65 m%)
    
    Notice from spectre at time = 100.42 ns during periodic steady state analysis `pss'.
        Found trapezoidal ringing on node I19.M4:int_s.
    Notice from spectre at time = 100.423 ns during periodic steady state analysis `pss'.
        Found trapezoidal ringing on node I19.M4:int_s.
    Notice from spectre at time = 100.429 ns during periodic steady state analysis `pss'.
        Found trapezoidal ringing on node I19.M4:sbnode.
    Notice from spectre at time = 100.445 ns during periodic steady state analysis `pss'.
        Found trapezoidal ringing on node I19.M4:sbnode.
    Notice from spectre at time = 100.585 ns during periodic steady state analysis `pss'.
        Found trapezoidal ringing on node I19.M4:int_s.
            Further occurrences of this notice will be suppressed.
    
    The Estimated oscillating frequency from Tstab Tran is = 3.02351 GHz . 
    
    Tstab: runs at least 100 timesteps per cycle,     MaxStep=3.30741e-12
    
    ========================================
    `pss': time = (101.806 ns -> 102.136 ns)
    ========================================
    
    Output and IC/nodeset summary:
                     save   22      (current)
                     save   56      (voltage)
                     ic     1       
    
        pss: time = 101.8 ns    (3.04 %), step = 3.307 ps        (1 %)
        pss: time = 101.8 ns    (8.04 %), step = 3.307 ps        (1 %)
        pss: time = 101.8 ns      (13 %), step = 3.307 ps        (1 %)
        pss: time = 101.9 ns      (18 %), step = 3.307 ps        (1 %)
        pss: time = 101.9 ns      (23 %), step = 3.307 ps        (1 %)
        pss: time = 101.9 ns      (28 %), step = 3.307 ps        (1 %)
        pss: time = 101.9 ns      (33 %), step = 3.307 ps        (1 %)
        pss: time = 101.9 ns      (38 %), step = 3.307 ps        (1 %)
        pss: time = 101.9 ns      (43 %), step = 3.307 ps        (1 %)
        pss: time = 102 ns        (48 %), step = 3.307 ps        (1 %)
        pss: time = 102 ns        (53 %), step = 3.307 ps        (1 %)
        pss: time = 102 ns        (58 %), step = 3.307 ps        (1 %)
        pss: time = 102 ns        (63 %), step = 3.307 ps        (1 %)
        pss: time = 102 ns        (68 %), step = 3.307 ps        (1 %)
        pss: time = 102 ns        (73 %), step = 3.307 ps        (1 %)
        pss: time = 102.1 ns      (78 %), step = 3.307 ps        (1 %)
        pss: time = 102.1 ns      (83 %), step = 3.307 ps        (1 %)
        pss: time = 102.1 ns      (88 %), step = 3.307 ps        (1 %)
        pss: time = 102.1 ns      (93 %), step = 3.307 ps        (1 %)
        pss: time = 102.1 ns      (98 %), step = 3.307 ps        (1 %)
    Total time required for tstab analysis `pss': CPU = 8.48371 s, elapsed = 8.60285 s.
    Time accumulated: CPU = 8.82966 s, elapsed = 9.32776 s.
    Peak resident memory used = 61.3 Mbytes.
    
    Pinning node: 97, harm: 2, name: I19.M3:int_g, value: (-0.210003, -0.305484)
    
    ==============================
         Harmonic balance
    ==============================
    Important HB parameters:
        RelTol=1.00e-05
        abstol(I)=1.00e-12 A
        abstol(V)=1.00e-06 V
        residualtol=1.00e+00
        lteratio=1.00e+01
        steadyratio=1.00e+00
        maxperiods=100
    
    
    ********** initial residual **********
    Resd Norm=9.50e+03  at node I20.M0:int_g  harm=(14)
    
    ********** iter = 1 **********
    Delta Norm=1.33e+03  at node I20.V3:p  harm=(0)
    Resd Norm=1.56e+04  at node M0:int_d  harm=(2)
    Frequency= 3.0281e+09 Hz, delta f= 4.63e+06
    
    ********** iter = 2 **********
    Delta Norm=1.02e+03  at node I20.V3:p  harm=(2)
    Resd Norm=1.94e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0334e+09 Hz, delta f= 5.21e+06
    
    ********** iter = 3 **********
    Delta Norm=5.03e+02  at node V1:p  harm=(2)
    Resd Norm=5.50e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0333e+09 Hz, delta f= -2.63e+04
    
    ********** iter = 4 **********
    Delta Norm=4.51e+02  at node V1:p  harm=(2)
    Resd Norm=3.59e+02  at node M4:int_g  harm=(5)
    Frequency= 3.0337e+09 Hz, delta f= 3.56e+05
    
    ********** iter = 5 **********
    Delta Norm=6.70e+02  at node V1:p  harm=(2)
    Resd Norm=4.87e+02  at node M4:int_g  harm=(5)
    Frequency= 3.0330e+09 Hz, delta f= -7.14e+05
    
    ********** iter = 6 **********
    Delta Norm=6.54e+02  at node V1:p  harm=(2)
    Resd Norm=5.94e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0336e+09 Hz, delta f= 6.43e+05
    
    ********** iter = 7 **********
    Delta Norm=1.26e+02  at node V1:p  harm=(2)
    Resd Norm=8.12e+01  at node M3:int_g  harm=(2)
    Frequency= 3.0336e+09 Hz, delta f= -1.23e+04
    
    ********** iter = 8 **********
    Damping Factor is 0.1 
    Delta Norm=2.20e+02  at node V1:p  harm=(2)
    Resd Norm=8.94e+01  at node M3:int_g  harm=(2)
    Frequency= 3.0338e+09 Hz, delta f= 2.22e+05
    
    ********** iter = 9 **********
    Damping Factor is 0.105 
    Delta Norm=9.14e+01  at node V1:p  harm=(2)
    Resd Norm=8.40e+01  at node M3:int_g  harm=(2)
    Frequency= 3.0337e+09 Hz, delta f= -9.91e+04
    
    ********** iter = 10 **********
    Damping Factor is 0.1 
    Delta Norm=1.75e+02  at node V1:p  harm=(2)
    Resd Norm=9.41e+01  at node M3:int_s  harm=(0)
    Frequency= 3.0335e+09 Hz, delta f= -1.86e+05
    
    ********** iter = 11 **********
    Damping Factor is 0.1 
    Delta Norm=1.60e+02  at node V1:p  harm=(2)
    Resd Norm=1.12e+02  at node M3:int_s  harm=(0)
    Frequency= 3.0337e+09 Hz, delta f= 1.62e+05
    
    ********** iter = 12 **********
    Damping Factor is 0.1 
    Delta Norm=1.40e+02  at node V1:p  harm=(2)
    Resd Norm=1.21e+02  at node M3:int_s  harm=(0)
    Frequency= 3.0335e+09 Hz, delta f= -1.45e+05
    
    ********** iter = 13 **********
    Damping Factor is 0.1 
    Delta Norm=2.19e+02  at node V1:p  harm=(2)
    Resd Norm=1.60e+02  at node M3:int_s  harm=(0)
    Frequency= 3.0338e+09 Hz, delta f= 2.23e+05
    
    ********** iter = 14 **********
    Damping Factor is 0.3814 
    Delta Norm=2.42e+02  at node V1:p  harm=(2)
    Resd Norm=1.61e+02  at node M4:int_s  harm=(0)
    Frequency= 3.0335e+09 Hz, delta f= -2.62e+05
    
    ********** iter = 15 **********
    Damping Factor is 0.1 
    Delta Norm=1.82e+02  at node V1:p  harm=(2)
    Resd Norm=1.80e+02  at node M3:int_s  harm=(0)
    Frequency= 3.0337e+09 Hz, delta f= 1.86e+05
    
    ********** iter = 16 **********
    Damping Factor is 0.4739 
    Delta Norm=2.87e+02  at node V1:p  harm=(2)
    Resd Norm=1.82e+02  at node M4:int_s  harm=(0)
    Frequency= 3.0334e+09 Hz, delta f= -2.96e+05
    
    ********** iter = 17 **********
    Damping Factor is 0.2338 
    Delta Norm=1.76e+02  at node V1:p  harm=(2)
    Resd Norm=1.73e+02  at node M4:int_s  harm=(0)
    Frequency= 3.0336e+09 Hz, delta f= 1.90e+05
    
    ********** iter = 18 **********
    Damping Factor is 0.1 
    Delta Norm=2.32e+02  at node V1:p  harm=(2)
    Resd Norm=2.17e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0334e+09 Hz, delta f= -2.32e+05
    
    ********** iter = 19 **********
    Damping Factor is 0.1 
    Delta Norm=1.02e+02  at node V1:p  harm=(2)
    Resd Norm=2.05e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 9.86e+04
    
    ********** iter = 20 **********
    Damping Factor is 0.1 
    Delta Norm=1.85e+02  at node V1:p  harm=(2)
    Resd Norm=2.27e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0336e+09 Hz, delta f= 1.86e+05
    
    ********** iter = 21 **********
    Damping Factor is 0.1 
    Delta Norm=1.47e+02  at node V1:p  harm=(2)
    Resd Norm=2.28e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= -1.52e+05
    
    ********** iter = 22 **********
    Damping Factor is 0.1 
    Delta Norm=3.85e+02  at node V1:p  harm=(2)
    Resd Norm=3.88e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0339e+09 Hz, delta f= 3.88e+05
    
    ********** iter = 23 **********
    Delta Norm=4.62e+02  at node V1:p  harm=(2)
    Resd Norm=2.56e+02  at node M4:int_g  harm=(5)
    Frequency= 3.0334e+09 Hz, delta f= -4.71e+05
    
    ********** iter = 24 **********
    Damping Factor is 0.1 
    Delta Norm=1.59e+02  at node V1:p  harm=(2)
    Resd Norm=2.61e+02  at node M4:int_g  harm=(5)
    Frequency= 3.0336e+09 Hz, delta f= 1.60e+05
    
    ********** iter = 25 **********
    Damping Factor is 0.1 
    Delta Norm=3.11e+02  at node V1:p  harm=(2)
    Resd Norm=3.47e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0333e+09 Hz, delta f= -3.16e+05
    
    ********** iter = 26 **********
    Damping Factor is 0.2 
    Delta Norm=1.96e+02  at node V1:p  harm=(2)
    Resd Norm=3.23e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0334e+09 Hz, delta f= 1.92e+05
    
    ********** iter = 27 **********
    Damping Factor is 0.1 
    Delta Norm=4.78e+02  at node V1:p  harm=(2)
    Resd Norm=5.73e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0339e+09 Hz, delta f= 4.82e+05
    
    ********** iter = 28 **********
    Delta Norm=3.86e+02  at node V1:p  harm=(2)
    Resd Norm=1.95e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0336e+09 Hz, delta f= -3.61e+05
    
    ********** iter = 29 **********
    Damping Factor is 0.1 
    Delta Norm=2.11e+03  at node V1:p  harm=(2)
    Resd Norm=5.52e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0314e+09 Hz, delta f= -2.15e+06
    
    ********** iter = 30 **********
    Damping Factor is 0.1 
    Delta Norm=1.41e+03  at node V1:p  harm=(2)
    Resd Norm=9.25e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0310e+09 Hz, delta f= -4.48e+05
    
    ********** iter = 31 **********
    Delta Norm=8.38e+02  at node V1:p  harm=(2)
    Resd Norm=1.41e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0329e+09 Hz, delta f= 1.89e+06
    
    ********** iter = 32 **********
    Damping Factor is 0.4 
    Delta Norm=5.20e+02  at node V1:p  harm=(2)
    Resd Norm=1.17e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0333e+09 Hz, delta f= 4.29e+05
    
    ********** iter = 33 **********
    Damping Factor is 0.1 
    Delta Norm=2.11e+02  at node V1:p  harm=(2)
    Resd Norm=1.12e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0331e+09 Hz, delta f= -2.00e+05
    
    ********** iter = 34 **********
    Damping Factor is 0.1 
    Delta Norm=2.12e+02  at node V1:p  harm=(2)
    Resd Norm=1.06e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0333e+09 Hz, delta f= 2.03e+05
    
    ********** iter = 35 **********
    Damping Factor is 0.1 
    Delta Norm=2.88e+02  at node V1:p  harm=(2)
    Resd Norm=1.06e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0330e+09 Hz, delta f= -2.77e+05
    
    ********** iter = 36 **********
    Damping Factor is 0.2 
    Delta Norm=3.03e+02  at node V1:p  harm=(2)
    Resd Norm=9.54e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0333e+09 Hz, delta f= 2.86e+05
    
    ********** iter = 37 **********
    Damping Factor is 0.1 
    Delta Norm=2.76e+02  at node V1:p  harm=(2)
    Resd Norm=9.60e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0330e+09 Hz, delta f= -2.65e+05
    
    ********** iter = 38 **********
    Damping Factor is 0.1 
    Delta Norm=1.50e+02  at node V1:p  harm=(2)
    Resd Norm=8.88e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0332e+09 Hz, delta f= 1.43e+05
    
    ********** iter = 39 **********
    Damping Factor is 0.1 
    Delta Norm=3.16e+02  at node V1:p  harm=(2)
    Resd Norm=9.06e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0335e+09 Hz, delta f= 3.09e+05
    
    ********** iter = 40 **********
    Delta Norm=6.02e+02  at node V1:p  harm=(2)
    Resd Norm=4.83e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0330e+09 Hz, delta f= -5.24e+05
    
    ********** iter = 41 **********
    Damping Factor is 0.5969 
    Delta Norm=4.81e+02  at node V1:p  harm=(2)
    Resd Norm=4.91e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0334e+09 Hz, delta f= 4.31e+05
    
    ********** iter = 42 **********
    Damping Factor is 0.1 
    Delta Norm=9.00e+02  at node V1:p  harm=(2)
    Resd Norm=1.42e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0325e+09 Hz, delta f= -8.94e+05
    
    ********** iter = 43 **********
    Damping Factor is 0.3 
    Delta Norm=4.21e+02  at node V1:p  harm=(2)
    Resd Norm=1.28e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0328e+09 Hz, delta f= 3.22e+05
    
    ********** iter = 44 **********
    Damping Factor is 0.1 
    Delta Norm=2.63e+02  at node V1:p  harm=(2)
    Resd Norm=1.24e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0331e+09 Hz, delta f= 2.46e+05
    
    ********** iter = 45 **********
    Damping Factor is 0.1 
    Delta Norm=1.86e+02  at node V1:p  harm=(2)
    Resd Norm=1.17e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0329e+09 Hz, delta f= -1.55e+05
    
    ********** iter = 46 **********
    Damping Factor is 0.1 
    Delta Norm=3.18e+02  at node V1:p  harm=(2)
    Resd Norm=1.18e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0332e+09 Hz, delta f= 3.01e+05
    
    ********** iter = 47 **********
    Delta Norm=7.93e+02  at node V1:p  harm=(2)
    Resd Norm=9.20e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0326e+09 Hz, delta f= -5.73e+05
    
    ********** iter = 48 **********
    Damping Factor is 0.3 
    Delta Norm=2.97e+02  at node V1:p  harm=(2)
    Resd Norm=7.81e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0329e+09 Hz, delta f= 2.24e+05
    
    ********** iter = 49 **********
    Damping Factor is 0.3 
    Delta Norm=2.88e+02  at node V1:p  harm=(2)
    Resd Norm=6.54e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0331e+09 Hz, delta f= 2.63e+05
    
    ********** iter = 50 **********
    Damping Factor is 0.1 
    Delta Norm=1.33e+02  at node V1:p  harm=(2)
    Resd Norm=6.07e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0333e+09 Hz, delta f= 1.33e+05
    
    ********** iter = 51 **********
    Damping Factor is 0.1 
    Delta Norm=2.85e+02  at node V1:p  harm=(2)
    Resd Norm=6.32e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0335e+09 Hz, delta f= 2.86e+05
    
    ********** iter = 52 **********
    Delta Norm=6.69e+02  at node V1:p  harm=(2)
    Resd Norm=5.55e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0329e+09 Hz, delta f= -6.06e+05
    
    ********** iter = 53 **********
    Damping Factor is 0.6123 
    Delta Norm=5.20e+02  at node V1:p  harm=(2)
    Resd Norm=5.60e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0334e+09 Hz, delta f= 4.69e+05
    
    ********** iter = 54 **********
    Damping Factor is 0.1 
    Delta Norm=2.18e+02  at node V1:p  harm=(2)
    Resd Norm=5.62e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0332e+09 Hz, delta f= -2.12e+05
    
    ********** iter = 55 **********
    Damping Factor is 0.1 
    Delta Norm=1.60e+02  at node V1:p  harm=(2)
    Resd Norm=5.33e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0334e+09 Hz, delta f= 1.60e+05
    
    ********** iter = 56 **********
    Damping Factor is 0.1 
    Delta Norm=1.68e+03  at node V1:p  harm=(2)
    Resd Norm=4.19e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0317e+09 Hz, delta f= -1.67e+06
    
    ********** iter = 57 **********
    Damping Factor is 0.1 
    Delta Norm=5.02e+02  at node V1:p  harm=(2)
    Resd Norm=4.34e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0317e+09 Hz, delta f= 1.71e+04
    
    ********** iter = 58 **********
    Damping Factor is 0.1 
    Delta Norm=3.80e+02  at node V1:p  harm=(2)
    Resd Norm=4.30e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0317e+09 Hz, delta f= -4.26e+04
    
    ********** iter = 59 **********
    Damping Factor is 0.1 
    Delta Norm=8.12e+02  at node V1:p  harm=(2)
    Resd Norm=5.25e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0318e+09 Hz, delta f= 9.75e+04
    
    ********** iter = 60 **********
    Delta Norm=7.79e+02  at node V1:p  harm=(2)
    Resd Norm=1.25e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0325e+09 Hz, delta f= 7.25e+05
    
    ********** iter = 61 **********
    Damping Factor is 0.3 
    Delta Norm=3.54e+02  at node V1:p  harm=(2)
    Resd Norm=1.09e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0326e+09 Hz, delta f= 1.50e+05
    
    ********** iter = 62 **********
    Damping Factor is 0.4 
    Delta Norm=4.03e+02  at node V1:p  harm=(2)
    Resd Norm=8.91e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0329e+09 Hz, delta f= 2.79e+05
    
    ********** iter = 63 **********
    Damping Factor is 0.3 
    Delta Norm=2.85e+02  at node V1:p  harm=(2)
    Resd Norm=7.21e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0332e+09 Hz, delta f= 2.64e+05
    
    ********** iter = 64 **********
    Damping Factor is 0.1 
    Delta Norm=1.38e+02  at node V1:p  harm=(2)
    Resd Norm=6.68e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0333e+09 Hz, delta f= 1.38e+05
    
    ********** iter = 65 **********
    Damping Factor is 0.1 
    Delta Norm=3.97e+02  at node V1:p  harm=(2)
    Resd Norm=7.60e+02  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0337e+09 Hz, delta f= 3.99e+05
    
    ********** iter = 66 **********
    Delta Norm=4.14e+02  at node V1:p  harm=(2)
    Resd Norm=2.32e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0334e+09 Hz, delta f= -3.60e+05
    
    ********** iter = 67 **********
    Damping Factor is 0.1 
    Delta Norm=1.13e+02  at node V1:p  harm=(2)
    Resd Norm=2.24e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 1.12e+05
    
    ********** iter = 68 **********
    Damping Factor is 0.1 
    Delta Norm=2.81e+02  at node V1:p  harm=(2)
    Resd Norm=2.97e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0338e+09 Hz, delta f= 2.84e+05
    
    ********** iter = 69 **********
    Damping Factor is 0.581 
    Delta Norm=3.82e+02  at node V1:p  harm=(2)
    Resd Norm=3.01e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0334e+09 Hz, delta f= -3.88e+05
    
    ********** iter = 70 **********
    Damping Factor is 0.1 
    Delta Norm=1.42e+02  at node V1:p  harm=(2)
    Resd Norm=2.95e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 1.41e+05
    
    ********** iter = 71 **********
    Damping Factor is 0.1 
    Delta Norm=2.19e+03  at node V1:p  harm=(2)
    Resd Norm=6.23e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0313e+09 Hz, delta f= -2.21e+06
    
    ********** iter = 72 **********
    
    Warning from spectre during periodic steady state analysis `pss'.
        WARNING (CMI-2682): M4: The bulk-drain junction forward bias voltage (998.606 mV) exceeds `VjdmFwd' = 951.351 mV.  The results are now incorrect because the junction current model has been linearized
    Notice from spectre during periodic steady state analysis `pss'.
        M4: The bulk-drain junction returns to normal bias condition
    Warning from spectre during periodic steady state analysis `pss'.
        WARNING (CMI-2682): M3: The bulk-drain junction forward bias voltage (998.576 mV) exceeds `VjdmFwd' = 951.351 mV.  The results are now incorrect because the junction current model has been linearized
    
    Damping Factor is 0.1 
    Delta Norm=3.09e+03  at node V1:p  harm=(2)
    Resd Norm=2.11e+04  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0298e+09 Hz, delta f= -1.52e+06
    
    ********** iter = 73 **********
    Delta Norm=1.32e+03  at node V2:p  harm=(2)
    Resd Norm=6.41e+03  at node I20.M5:int_d  harm=(0)
    Frequency= 3.0342e+09 Hz, delta f= 4.46e+06
    
    ********** iter = 74 **********
    Delta Norm=3.01e+02  at node V1:p  harm=(2)
    Resd Norm=8.88e+02  at node M4:int_g  harm=(3)
    Frequency= 3.0343e+09 Hz, delta f= 2.28e+04
    
    ********** iter = 75 **********
    Delta Norm=4.54e+02  at node V1:p  harm=(2)
    Resd Norm=2.36e+02  at node M4:int_s  harm=(0)
    Frequency= 3.0338e+09 Hz, delta f= -4.78e+05
    
    ********** iter = 76 **********
    Damping Factor is 0.3998 
    Delta Norm=2.88e+02  at node V1:p  harm=(2)
    Resd Norm=2.30e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= -2.99e+05
    
    ********** iter = 77 **********
    Damping Factor is 0.1 
    Delta Norm=2.88e+02  at node V1:p  harm=(2)
    Resd Norm=3.08e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0338e+09 Hz, delta f= 2.90e+05
    
    ********** iter = 78 **********
    Damping Factor is 0.6552 
    Delta Norm=4.16e+02  at node V1:p  harm=(2)
    Resd Norm=3.11e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0333e+09 Hz, delta f= -4.24e+05
    
    ********** iter = 79 **********
    Damping Factor is 0.1 
    Delta Norm=1.26e+02  at node V1:p  harm=(2)
    Resd Norm=2.99e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 1.25e+05
    
    ********** iter = 80 **********
    Damping Factor is 0.1 
    Delta Norm=5.37e+02  at node V1:p  harm=(2)
    Resd Norm=6.27e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0340e+09 Hz, delta f= 5.41e+05
    
    ********** iter = 81 **********
    Delta Norm=3.72e+02  at node V1:p  harm=(2)
    Resd Norm=1.84e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0337e+09 Hz, delta f= -3.51e+05
    
    ********** iter = 82 **********
    Damping Factor is 0.1 
    Delta Norm=1.73e+02  at node V1:p  harm=(2)
    Resd Norm=2.00e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= -1.78e+05
    
    ********** iter = 83 **********
    Damping Factor is 0.1 
    Delta Norm=2.24e+02  at node V1:p  harm=(2)
    Resd Norm=2.40e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0337e+09 Hz, delta f= 2.25e+05
    
    ********** iter = 84 **********
    Damping Factor is 0.1 
    Delta Norm=9.61e+01  at node V1:p  harm=(2)
    Resd Norm=2.27e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0336e+09 Hz, delta f= -9.88e+04
    
    ********** iter = 85 **********
    Damping Factor is 0.1 
    Delta Norm=2.42e+02  at node V1:p  harm=(2)
    Resd Norm=2.73e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0334e+09 Hz, delta f= -2.47e+05
    
    ********** iter = 86 **********
    Damping Factor is 0.1 
    Delta Norm=1.20e+02  at node V1:p  harm=(2)
    Resd Norm=2.62e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 1.19e+05
    
    ********** iter = 87 **********
    Damping Factor is 0.1 
    Delta Norm=4.07e+02  at node V1:p  harm=(2)
    Resd Norm=4.39e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0339e+09 Hz, delta f= 4.11e+05
    
    ********** iter = 88 **********
    Delta Norm=4.41e+02  at node V1:p  harm=(2)
    Resd Norm=2.44e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= -4.36e+05
    
    ********** iter = 89 **********
    Damping Factor is 0.1 
    Delta Norm=2.12e+02  at node V1:p  harm=(2)
    Resd Norm=2.73e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0337e+09 Hz, delta f= 2.13e+05
    
    ********** iter = 90 **********
    Damping Factor is 0.1 
    Delta Norm=1.09e+02  at node V1:p  harm=(2)
    Resd Norm=2.60e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0336e+09 Hz, delta f= -1.12e+05
    
    ********** iter = 91 **********
    Damping Factor is 0.1 
    Delta Norm=5.27e+02  at node V1:p  harm=(2)
    Resd Norm=5.50e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0330e+09 Hz, delta f= -5.35e+05
    
    ********** iter = 92 **********
    Damping Factor is 0.5787 
    Delta Norm=5.05e+02  at node V1:p  harm=(2)
    Resd Norm=5.39e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 4.70e+05
    
    ********** iter = 93 **********
    Damping Factor is 0.2 
    Delta Norm=2.26e+02  at node V1:p  harm=(2)
    Resd Norm=4.94e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0333e+09 Hz, delta f= -2.16e+05
    
    ********** iter = 94 **********
    Damping Factor is 0.1 
    Delta Norm=1.96e+02  at node V1:p  harm=(2)
    Resd Norm=4.92e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 1.96e+05
    
    ********** iter = 95 **********
    Damping Factor is 0.1 
    Delta Norm=1.75e+02  at node V1:p  harm=(2)
    Resd Norm=4.80e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0333e+09 Hz, delta f= -1.71e+05
    
    ********** iter = 96 **********
    Damping Factor is 0.1 
    Delta Norm=2.25e+02  at node V1:p  harm=(2)
    Resd Norm=4.94e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 2.25e+05
    
    ********** iter = 97 **********
    Damping Factor is 0.2 
    Delta Norm=2.20e+02  at node V1:p  harm=(2)
    Resd Norm=4.55e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0333e+09 Hz, delta f= -2.13e+05
    
    ********** iter = 98 **********
    Damping Factor is 0.1 
    Delta Norm=2.10e+02  at node V1:p  harm=(2)
    Resd Norm=4.63e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0335e+09 Hz, delta f= 2.10e+05
    
    ********** iter = 99 **********
    Damping Factor is 0.1 
    Delta Norm=1.30e+02  at node V1:p  harm=(2)
    Resd Norm=4.38e+02  at node M3:int_g  harm=(5)
    Frequency= 3.0334e+09 Hz, delta f= -1.28e+05
    
    ********** iter = 100 **********
    Damping Factor is 0.1 
    Delta Norm=9.18e+02  at node V1:p  harm=(2)
    Resd Norm=1.47e+03  at node M3:int_g  harm=(5)
    Frequency= 3.0343e+09 Hz, delta f= 9.19e+05
    
    Warning: Maximum number of iterations reached. Result may not be correct. You can increase tstab and harms or try to use twotier method.
    
    CPU time=7 s
    
    
    Restart and try two-tier method.
    Trying `homotopy = gmin'.
    
    Notice from spectre during DC analysis, during periodic steady state analysis `pss'.
        GminDC = 1 pS is large enough to noticeably affect the DC solution.
            dV(net026) = -54.9448 mV
            Use the `gmin_check' option to eliminate or expand this report.
        Bad pivoting is found during DC analysis. Option dc_pivot_check=yes is recommended for possible improvement of convergence.
    
    DC simulation time: CPU = 26.996 ms, elapsed = 27.1771 ms.
    
    Using linear IC
    Linear IC: estimated frequency is 2.76904e+09 Hz
    Estimated frequency 2.769040e+09 Hz
    First pinning node: 5, name: out_n
    Second pinning node: 4, name: out_p
    Pinning : harm: 1, value: (0.010000, 0.000000)
    
    ==============================
         Harmonic balance
    ==============================
    Important HB parameters:
        RelTol=1.00e-05
        abstol(I)=1.00e-12 A
        abstol(V)=1.00e-06 V
        residualtol=1.00e+00
        lteratio=1.00e+01
        steadyratio=1.00e+00
        maxperiods=100
    
    
    Generating Oscillator Waveform Initial Guess
    
    ********** IC iter = 1 **********
    Probe value is ...1.440000e-02
    Probe current is ...1.487892e-05
    
    
    ********** IC iter = 2 **********
    Probe value is ...2.073600e-02
    Probe current is ...2.136421e-05
    
    
    ********** IC iter = 3 **********
    Probe value is ...2.985984e-02
    Probe current is ...3.058126e-05
    
    
    ********** IC iter = 4 **********
    Probe value is ...4.299817e-02
    Probe current is ...4.349288e-05
    
    
    ********** IC iter = 5 **********
    Probe value is ...6.191736e-02
    Probe current is ...6.101591e-05
    
    
    ********** IC iter = 6 **********
    Probe value is ...8.916100e-02
    Probe current is ...8.311137e-05
    
    
    ********** IC iter = 7 **********
    Probe value is ...1.283918e-01
    Probe current is ...1.059662e-04
    
    
    ********** IC iter = 8 **********
    Probe value is ...1.848843e-01
    Probe current is ...1.150447e-04
    
    
    ********** IC iter = 9 **********
    Probe value is ...2.662333e-01
    Probe current is ...7.629898e-05
    
    
    ********** IC iter = 10 **********
    Probe value is ...2.715580e-01
    Probe current is ...2.538428e-05
    
    
    ********** IC iter = 11 **********
    Probe value is ...2.822073e-01
    Probe current is ...1.112679e-05
    
    Initial Waveform Guess Found
    
    ********** initial residual **********
    Resd Norm=6.76e-02  at node M3:int_g  harm=(8)
    
    ********** Inner iter = 1 **********
    Resd Norm=4.81e-04  at node M4:int_g  harm=(13)
    Probe current=(-3.7420e-06, -2.3388e-04), delta=(5.6065e-12, 4.0227e-12)
    
    -> Outer iter= 1: Probe Current=(-3.7420e-06, -2.3388e-04), norm =1.7751e+01
    -> Outer iter= 1: Frequency=3.2070e+09 Hz, delta=4.3800e+08, norm=1.3657e+04
    -> Outer iter= 1: ProbeVol=(3.9451e-01,0.0000e+00), delta=1.0698e-01, norm =2.6446e+03, Damping factor =1.0000e+00
    
    ********** initial residual **********
    Resd Norm=2.83e+03  at node I19.M_ver_n:int_g  harm=(2)
    
    ********** Inner iter = 1 **********
    Resd Norm=1.10e+03  at node I20.M5:int_s  harm=(1)
    Probe current=(6.7649e-06, 1.0735e-04), delta=(6.7649e-06, 1.0735e-04)
    
    ********** Inner iter = 2 **********
    Resd Norm=3.04e+02  at node M3:int_g  harm=(3)
    Probe current=(4.3885e-06, 1.0457e-04), delta=(-2.3764e-06, -2.7870e-06)
    
    ********** Inner iter = 3 **********
    Resd Norm=1.11e+01  at node M3:int_g  harm=(1)
    Probe current=(4.5662e-06, 1.0434e-04), delta=(1.7768e-07, -2.2870e-07)
    
    ********** Inner iter = 4 **********
    Resd Norm=2.56e-01  at node M3:int_g  harm=(4)
    Probe current=(4.5717e-06, 1.0434e-04), delta=(5.5545e-09, 5.6587e-09)
    
    -> Outer iter= 2: Probe Current=(4.5717e-06, 1.0434e-04), norm =6.8827e+00
    -> Outer iter= 2: Frequency=3.1033e+09 Hz, delta=-1.0370e+08, norm=3.3415e+03
    -> Outer iter= 2: ProbeVol=(3.7019e-01,0.0000e+00), delta=-2.4322e-02, norm =6.3974e+02, Damping factor =1.0000e+00
    
    ********** initial residual **********
    Resd Norm=5.80e+02  at node I19.M3:int_g  harm=(2)
    
    ********** Inner iter = 1 **********
    Resd Norm=4.18e+01  at node M3:int_g  harm=(3)
    Probe current=(4.2644e-08, 5.4505e-06), delta=(4.2644e-08, 5.4505e-06)
    
    ********** Inner iter = 2 **********
    Resd Norm=9.12e+00  at node M3:int_g  harm=(2)
    Probe current=(2.7448e-07, 5.4247e-06), delta=(2.3184e-07, -2.5865e-08)
    
    ********** Inner iter = 3 **********
    Resd Norm=1.80e-01  at node M4:int_g  harm=(11)
    Probe current=(2.6996e-07, 5.4222e-06), delta=(-4.5236e-09, -2.5168e-09)
    
    -> Outer iter= 3: Probe Current=(2.6996e-07, 5.4222e-06), norm =3.6952e-01
    Set damping factor to 1
    -> Outer iter= 3: Frequency=3.0973e+09 Hz, delta=-6.0073e+06, norm=1.9394e+02
    -> Outer iter= 3: ProbeVol=(3.6881e-01,0.0000e+00), delta=-1.3806e-03, norm =3.6447e+01, Damping factor =1.0000e+00
    
    ********** initial residual **********
    Resd Norm=1.48e+00  at node I19.M3:int_g  harm=(2)
    
    ********** Inner iter = 1 **********
    Resd Norm=2.01e-01  at node M3:int_g  harm=(6)
    Probe current=(4.1068e-10, 1.8046e-08), delta=(4.1068e-10, 1.8046e-08)
    
    -> Outer iter= 4: Probe Current=(4.1068e-10, 1.8046e-08), norm =1.2309e-03
    -> Outer iter= 4: Frequency=3.0973e+09 Hz, delta=-2.0236e+04, norm=6.5331e-01
    -> Outer iter= 4: ProbeVol=(3.6880e-01,0.0000e+00), delta=-5.0271e-06, norm =1.3271e-01, Damping factor =1.0000e+00
    
    
    *************************************************
    Fundamental frequency is 3.09731 GHz.
    *************************************************
    
    CPU time=2 s
    
    
    Opening the PSF file ../psf/pss.td.pss ...
    
    Opening the PSF file ../psf/pss.fd.pss ...
    Total time required for pss analysis `pss': CPU = 17.7743 s, elapsed = 17.9346 s.
    Time accumulated: CPU = 18.0942 s, elapsed = 18.6185 s.
    Peak resident memory used = 65.1 Mbytes.
    
    
    Notice from spectre.
        30 notices suppressed.
    
    modelParameter: writing model parameter values to rawfile.
    
    Opening the PSF file ../psf/modelParameter.info ...
    element: writing instance parameter values to rawfile.
    
    Opening the PSF file ../psf/element.info ...
    outputParameter: writing output parameter values to rawfile.
    
    Opening the PSF file ../psf/outputParameter.info ...
    designParamVals: writing netlist parameters to rawfile.
    
    Opening the PSFASCII file ../psf/designParamVals.info ...
    primitives: writing primitives to rawfile.
    
    Opening the PSFASCII file ../psf/primitives.info.primitives ...
    subckts: writing subcircuits to rawfile.
    
    Opening the PSFASCII file ../psf/subckts.info.subckts ...
    

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel

Community Guidelines

The Cadence Design Communities support Cadence users and technologists interacting to exchange ideas, news, technical information, and best practices to solve problems and get the most from Cadence technology. The community is open to everyone, and to provide the most value, we require participants to follow our Community Guidelines that facilitate a quality exchange of ideas and information. By accessing, contributing, using or downloading any materials from the site, you agree to be bound by the full Community Guidelines.

© 2025 Cadence Design Systems, Inc. All Rights Reserved.

  • Terms of Use
  • Privacy
  • Cookie Policy
  • US Trademarks
  • Do Not Sell or Share My Personal Information