• Skip to main content
  • Skip to search
  • Skip to footer
Cadence Home
  • This search text may be transcribed, used, stored, or accessed by our third-party service providers per our Cookie Policy and Privacy Policy.

  1. Community Forums
  2. Custom IC Design
  3. SPICE Model for Magnetic Tunnel Junctions

Stats

  • Locked Locked
  • Replies 6
  • Subscribers 126
  • Views 16633
  • Members are here 0
This discussion has been locked.
You can no longer post new replies to this discussion. If you have a question you can start a new discussion

SPICE Model for Magnetic Tunnel Junctions

xiaoweishawn
xiaoweishawn over 11 years ago

I am trying to find a good model for magnetic tunnel junction(MTJ) that could work in Cadence to do simulation. BTW, MTJ is a new device and has no present models in cadence like nefet or pfet. I happended to find this one nanohub.org/.../SPICE_Model_Manual.pdf​ which seems quite promising.

according to what said on the webpage, the model file includes 6 files: LLG.lib, LLGThermRandNum.va, MTJ.lib, MTJ_res.va, NRL_MTJspice_ENC_LIB.inc and USUAGE( these files could be found  nanohub.org/.../19048, then under the supporting Docs column). 

My question is what might  these six files for and how could I performe simulation with these six files in cadence?

I am a beginner in cadence, not sure whether I express myself clear or not. Thanks so much for your possible help!

Bless. 

 

  • Cancel
Parents
  • xiaoweishawn
    xiaoweishawn over 11 years ago

    Hi, Quek.

    How can I use the two va files, what are their functions: LLGThermRandNum.va and MTJ_res.va  

    the LLGThermRandNum.va's content is like this:

    // Creator: Xuanyao Fong

    // Email: xfong@purdue.edu

    // Contributors: Xuanyao Fong

    // This block generates random numbers for use with the LLG thermal

    // fluctuation calculations


    `include "disciplines.vams"

    `include "constants.vams"


    module ThermRandNumBlk(t1);

    output t1;

    electrical t1; //External Terminals of the resistor


    integer seedVal;


    analog begin : res_module


    V(t1) <+ $rdist_normal(seedVal, 0.0, 1.0);


    end


    endmodule

     

    and the MTJ_res.va file is like this:\

     

    // Creator: Harsha Choday

    // Email: schoday@purdue.edu

    // Contributors: Xuanyao Fong

    // This file is a copy of MTJ_QCOM5_res.va with added comment lines

    // Resistance model of MTJ with physical params:

    // Eb=0.8, delta=0.75, m_fm=0.735, m_ox=0.74, Ms=800, Ku2=30000

    // This file and the coefficients for fitting equation generated by MATLAB


    `include "disciplines.vams"

    `include "constants.vams"


    module MTJ_res(t1,t2,MTJ_curr,th,phi,th_hard,phi_hard);

    inout t1,t2;

    input th,phi,th_hard,phi_hard;

    output MTJ_curr;

    electrical t1,t2,MTJ_curr,th,phi,th_hard,phi_hard; //External Terminals of the resistor


    // Coefficients for fitting Rap

    parameter real c1_ap = -6.7524 from (-inf:inf);

    parameter real c2_ap = 23.2848 from (-inf:inf);

    parameter real c3_ap = -7.56891 from (-inf:inf);

    parameter real c4_ap = 24.144 from (-inf:inf);

    parameter real c5_p = 1 from (-inf:inf);


    // Coefficients for fitting Rp

    parameter real c1_p = -5.90497 from (-inf:inf);

    parameter real c2_p = 21.5434 from (-inf:inf);

    parameter real c3_p = -7.46919 from (-inf:inf);

    parameter real c4_p = 25.0243 from (-inf:inf);

    parameter real c5_ap = 1 from (-inf:inf);


    parameter real Tox = 1.15 from (-inf:inf);

    parameter real Area = 3.6298e-15 from (-inf:inf); // 0.25*3.14*2.89*40e-9*40e-9 m2

    (* desc="MTJ Resistances", units="Ohm" *) real Gp, Gap, Gmtj, Rmtj, mdp;


    analog begin : res_module


    real Gp_pre, Gap_pre;


    mdp = (sin(V(th))*cos(V(th))*sin(V(th_hard))*cos(V(phi_hard))) + (sin(V(th))*sin(V(phi))*sin(V(th_hard))*sin(V(phi_hard))) + (cos(V(th))*cos(V(th_hard)));


    Gp_pre = exp(c1_p*Tox + c2_p)*pow(V(t1,t2),2) + exp(c3_p*Tox + c4_p); // Polynomial gives G/A

    Gap_pre = exp(c1_ap*Tox + c2_ap)*pow(V(t1,t2),2) + exp(c3_ap*Tox + c4_ap);


    Gp = (pow(Gp_pre,1))*(Area*1e4); // Apply term_pow and multiply area to obtain conductance

    Gap = (pow(Gap_pre,1))*(Area*1e4);


    Gmtj = Gap + (mdp+1)*0.5*(Gp-Gap);

    Rmtj = pow(Gmtj,-1);


    I(t1,t2) <+ V(t1,t2)/Rmtj;

    V(MTJ_curr) <+ -V(t2,t1)/Rmtj;

    end


    endmodule

     

     

    Thanks a lot!!!  

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel
Reply
  • xiaoweishawn
    xiaoweishawn over 11 years ago

    Hi, Quek.

    How can I use the two va files, what are their functions: LLGThermRandNum.va and MTJ_res.va  

    the LLGThermRandNum.va's content is like this:

    // Creator: Xuanyao Fong

    // Email: xfong@purdue.edu

    // Contributors: Xuanyao Fong

    // This block generates random numbers for use with the LLG thermal

    // fluctuation calculations


    `include "disciplines.vams"

    `include "constants.vams"


    module ThermRandNumBlk(t1);

    output t1;

    electrical t1; //External Terminals of the resistor


    integer seedVal;


    analog begin : res_module


    V(t1) <+ $rdist_normal(seedVal, 0.0, 1.0);


    end


    endmodule

     

    and the MTJ_res.va file is like this:\

     

    // Creator: Harsha Choday

    // Email: schoday@purdue.edu

    // Contributors: Xuanyao Fong

    // This file is a copy of MTJ_QCOM5_res.va with added comment lines

    // Resistance model of MTJ with physical params:

    // Eb=0.8, delta=0.75, m_fm=0.735, m_ox=0.74, Ms=800, Ku2=30000

    // This file and the coefficients for fitting equation generated by MATLAB


    `include "disciplines.vams"

    `include "constants.vams"


    module MTJ_res(t1,t2,MTJ_curr,th,phi,th_hard,phi_hard);

    inout t1,t2;

    input th,phi,th_hard,phi_hard;

    output MTJ_curr;

    electrical t1,t2,MTJ_curr,th,phi,th_hard,phi_hard; //External Terminals of the resistor


    // Coefficients for fitting Rap

    parameter real c1_ap = -6.7524 from (-inf:inf);

    parameter real c2_ap = 23.2848 from (-inf:inf);

    parameter real c3_ap = -7.56891 from (-inf:inf);

    parameter real c4_ap = 24.144 from (-inf:inf);

    parameter real c5_p = 1 from (-inf:inf);


    // Coefficients for fitting Rp

    parameter real c1_p = -5.90497 from (-inf:inf);

    parameter real c2_p = 21.5434 from (-inf:inf);

    parameter real c3_p = -7.46919 from (-inf:inf);

    parameter real c4_p = 25.0243 from (-inf:inf);

    parameter real c5_ap = 1 from (-inf:inf);


    parameter real Tox = 1.15 from (-inf:inf);

    parameter real Area = 3.6298e-15 from (-inf:inf); // 0.25*3.14*2.89*40e-9*40e-9 m2

    (* desc="MTJ Resistances", units="Ohm" *) real Gp, Gap, Gmtj, Rmtj, mdp;


    analog begin : res_module


    real Gp_pre, Gap_pre;


    mdp = (sin(V(th))*cos(V(th))*sin(V(th_hard))*cos(V(phi_hard))) + (sin(V(th))*sin(V(phi))*sin(V(th_hard))*sin(V(phi_hard))) + (cos(V(th))*cos(V(th_hard)));


    Gp_pre = exp(c1_p*Tox + c2_p)*pow(V(t1,t2),2) + exp(c3_p*Tox + c4_p); // Polynomial gives G/A

    Gap_pre = exp(c1_ap*Tox + c2_ap)*pow(V(t1,t2),2) + exp(c3_ap*Tox + c4_ap);


    Gp = (pow(Gp_pre,1))*(Area*1e4); // Apply term_pow and multiply area to obtain conductance

    Gap = (pow(Gap_pre,1))*(Area*1e4);


    Gmtj = Gap + (mdp+1)*0.5*(Gp-Gap);

    Rmtj = pow(Gmtj,-1);


    I(t1,t2) <+ V(t1,t2)/Rmtj;

    V(MTJ_curr) <+ -V(t2,t1)/Rmtj;

    end


    endmodule

     

     

    Thanks a lot!!!  

    • Cancel
    • Vote Up 0 Vote Down
    • Cancel
Children
No Data

Community Guidelines

The Cadence Design Communities support Cadence users and technologists interacting to exchange ideas, news, technical information, and best practices to solve problems and get the most from Cadence technology. The community is open to everyone, and to provide the most value, we require participants to follow our Community Guidelines that facilitate a quality exchange of ideas and information. By accessing, contributing, using or downloading any materials from the site, you agree to be bound by the full Community Guidelines.

© 2025 Cadence Design Systems, Inc. All Rights Reserved.

  • Terms of Use
  • Privacy
  • Cookie Policy
  • US Trademarks
  • Do Not Sell or Share My Personal Information